Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: David Mechem x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
David B. Mechem and Yefim L. Kogan

Abstract

A case of coastal California summer season boundary layer cloud has been simulated with the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System and the results analyzed in the context of consistency with conclusions derived from large eddy simulation–based (LES) studies. Results show a pronounced diurnal cycle and fair agreement with satellite-derived observations of liquid water path. When drizzle processes are included, a significant degree of mesoscale organization emerges in the form of cloud bands, accompanied by a transition from a well-mixed boundary layer topped by unbroken stratocumulus cloud into a more potentially unstable, convective boundary layer regime. The transition and the subsequent development of mesoscale variability is analogous to the drizzle-induced cloud breakup produced in large eddy simulation studies. The dynamics of the pure stratocumulus cloud are dictated by the model's subgrid parameterization, while the more convective regime exhibits appreciable vertical velocities characteristic of an ensemble of cumulus updrafts. The existence of convective updrafts is tied to a weak drizzle-induced decoupling of the cloud and subcloud layer, after which air of higher equivalent potential temperature (θ e) can pool at the surface. Some similarities to the propagation of deep convection are also noted.

Full access
Kevin J. Nelson, David B. Mechem, and Yefim L. Kogan

Abstract

Several warm-rain microphysical parameterizations are evaluated in a regional forecast model setting (using the Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System) by evaluating how accurately the model is able to represent the marine boundary layer (MBL). Cloud properties from a large suite of simulations using different parameterizations and concentrations of cloud condensation nuclei (CCN) are compared to ship-based observations from the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-REx) field campaign conducted over the southeastern Pacific (SEP). As in previous studies, the simulations systematically underestimate liquid water path and MBL cloud depth. On the other hand, the simulations overestimate precipitation rates relative to those derived from the scanning C-band radar on board the ship. Most of the simulations exhibit a diurnal cycle, although details differ somewhat from a recent observational study. In addition to direct comparisons with the observations, the internal microphysical consistency of simulated MBL cloud properties is assessed by comparing simulation output to a number of observationally and theoretically derived scalings for precipitation and coalescence scavenging. Simulation results are broadly consistent with these scalings, suggesting COAMPS is behaving in a microphysically consistent fashion. However, microphysical consistency as defined in the analysis is highly dependent upon the horizontal resolution of the model. Excessive depletion of CCN from large coalescence processing rates suggests the importance of parameterizing a source term for CCN or imposing some form of fixed, climatological background CCN concentration.

Full access
Laura M. Tomkins, David B. Mechem, Sandra E. Yuter, and Spencer R. Rhodes

Abstract

Large, abrupt clearing events have been documented in the marine stratocumulus cloud deck over the subtropical Southeast Atlantic Ocean. In these events, clouds are rapidly eroded along a line hundreds–to–thousands of kilometers in length that generally moves westward away from the coast. Because marine stratocumulus clouds exert a strong cooling effect on the planet, any phenomenon that acts to erode large areas of low clouds may be climatically important. Previous satellite-based research suggests that the cloud-eroding boundaries may be caused by westward-propagating atmospheric gravity waves rather than simple advection of the cloud. The behavior of the coastal offshore flow, which is proposed as a fundamental physical mechanism associated with the clearing events, is explored using the Weather Research and Forecasting model. Results are presented from several week-long simulations in the month of May when cloud-eroding boundaries exhibit maximum frequency. Two simulations cover periods containing multiple cloud-eroding boundaries (active periods), and two other simulations cover periods without any cloud-eroding boundaries (null periods). Passive tracers and an analysis of mass flux are used to assess the character of the diurnal west-African coastal circulation. Results indicate that the active periods containing cloud-eroding boundaries regularly experience stronger and deeper nocturnal offshore flow from the continent above the marine boundary layer, compared to the null periods. Additionally, we find that the boundary layer height is higher in the null periods than in the active periods, suggesting that the active periods are associated with areas of thinner clouds that may be more susceptible to cloud erosion.

Restricted access