Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Dongryeol Ryu x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Chihchung Chou, Dongryeol Ryu, Min-Hui Lo, Hao-Wei Wey, and Hector M. Malano

Abstract

From the 1980s, Indian summer monsoon rainfall (ISMR) shows a decreasing trend over north and northwest India, and there was a significant observed reduction in July over central and south India in 1982–2003. The key drivers of the changed ISMR, however, remain unclear. It was hypothesized that the large-scale irrigation development that started in the 1950s has resulted in land surface cooling, which slowed large-scale atmospheric circulation, exerting significant influences on ISMR. To test this hypothesis, a fully coupled model, the CESM v1.0.3, was used with a global irrigation dataset. In this study, spatially varying irrigation-induced feedback mechanisms are investigated in detail at different stages of the monsoon. Results show that soil moisture and evapotranspiration increase significantly over India throughout the summertime because of the irrigation. However, 2-m air temperature shows a significant reduction only in a limited region because the temperature change is influenced simultaneously by surface incoming shortwave radiation and evaporative cooling resulting from the irrigation, especially over the heavily irrigated region. Irrigation also induces a 925-hPa northeasterly wind from 30°N toward the equator. This is opposite to the prevailing direction of the Indian summer monsoon (ISM) wind that brings moist air to India. The modeled rainfall in the irrigated case significantly decreases up to 1.5 mm day−1 over central and north India from July to September. This paper reveals that the irrigation can contribute to both increasing and decreasing the surface temperature via multiple feedback mechanisms. The net effect is to weaken the ISM with the high spatial and temporal heterogeneity.

Full access
Min-Hui Lo, Wen-Ying Wu, Lois Iping Tang, Dongryeol Ryu, Mehnaz Rashid, and Ren-Jie Wu

Abstract

One of the critical components in understanding the climate system is the interaction between the land and the atmosphere. Whereas previous studies on land–atmosphere coupling mostly focus on its spatial hotspots, we explore the temporal evolution of land surface coupling strength (LCS) during a large-scale flood event in a semiarid region in northern Australia. The LCS indicates the relationship between soil moisture and latent heat flux, and the spatiotemporal variability in precipitation and soil water strongly affects the variability of LCS. The LCS is usually positive in the semiarid climate, where evapotranspiration (ET) occurs under the soil moisture–limited regime and thus increases with soil moisture. However, our analyses of combined land surface modeling and observational datasets show high temporal variability of LCS in the course of the extreme flood event followed by a drying period. The wet regions transferred the ET regime from the soil moisture–limited to the transition section, weakening the linear growth of ET with soil moisture, which resulted in the decline of LCS. The LCS remained weak until the flood retreated and the soil water approached the prestorm average state. Such temporal variation of the LCS has important implications for realistic parameterization of the land–atmosphere coupling and consequently improving subseasonal to seasonal climate forecast.

Open access