Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Dongryeol Ryu x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Fan Chen, Wade T. Crow, and Dongryeol Ryu

Abstract

Uncertainties in precipitation forcing and prestorm soil moisture states represent important sources of error in streamflow predictions obtained from a hydrologic model. An earlier synthetic twin experiment has demonstrated that error in both antecedent soil moisture states and rainfall forcing can be filtered by assimilating remotely sensed surface soil moisture retrievals. This opens up the possibility of applying satellite soil moisture estimates to address both key sources of error in hydrologic model predictions. Here, in an attempt to extend the synthetic analysis into a real-data environment, two satellite-based surface soil moisture products—based on both passive and active microwave remote sensing—are assimilated using the same dual forcing/state correction approach. A bias correction scheme is implemented to remove bias in background forecasts caused by synthetic perturbations in the ensemble filtering routines, and a triple collocation–based technique is adopted to derive rescaled observations and observation error variances. Results are largely in agreement with the earlier synthetic analysis. That is, the correction of satellite-derived rainfall forcing is able to improve streamflow prediction, especially during relatively high-flow periods. In contrast, prestorm soil moisture state correction is more efficient in improving the base flow component of streamflow. When rainfall and soil moisture state corrections are combined, the RMSE of both the high- and low-flow components of streamflow can be reduced by ~40% and ~30%, respectively. However, an unresolved issue is that soil moisture data assimilation also leads to underprediction of very intense precipitation/high-flow events.

Full access
Dongryeol Ryu, Wade T. Crow, Xiwu Zhan, and Thomas J. Jackson

Abstract

Hydrologic data assimilation has become an important tool for improving hydrologic model predictions by using observations from ground, aircraft, and satellite sensors. Among existing data assimilation methods, the ensemble Kalman filter (EnKF) provides a robust framework for optimally updating nonlinear model predictions using observations. In the EnKF, background prediction uncertainty is obtained using a Monte Carlo approach where state variables, parameters, and forcing data for the model are synthetically perturbed to explicitly simulate the error-prone representation of hydrologic processes in the model. However, it is shown here that, owing to the nonlinear nature of these processes, an ensemble of model forecasts perturbed by mean-zero Gaussian noise can produce biased background predictions. This ensemble perturbation bias in soil moisture states can lead to significant mass balance errors and degrade the performance of the EnKF analysis in deeper soil layers. Here, a simple method of bias correction is introduced in which such perturbation bias is corrected using an unperturbed model simulation run in parallel with the EnKF analysis. The proposed bias-correction scheme effectively removes biases in soil moisture and reduces soil water mass balance errors. The performance of the EnKF is improved in deeper layers when the filter is applied with the bias-correction scheme. The interplay of nonlinear hydrologic processes is discussed in the context of perturbation biases, and implications of the bias correction for real-data assimilation cases are presented.

Full access