Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: E. S. Takle x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
L. P. Chang, E. S. Takle, and R. L. Sani


We have developed a two-dimensional finite-element model for simulating atmospheric flow in the planetary boundary layer (PBL) of the earth. The finite-element method provides a useful alternative to the conventional finite-difference method in studying Bow phenomena that involve graded meshes and (or) irregular computational domains. It also provides a more natural way of incorporating Dirichlet-type boundary conditions. These properties make the finite-element method especially suitable for studying PBL flows. With the Deardorff-O'Brien turbulence scheme, the model was able to generate reasonable results in the simulations of a neutral PBL wind profile and a sea-breeze circulation.

Full access
Brian J. Vanderwende, Julie K. Lundquist, Michael E. Rhodes, Eugene S. Takle, and Samantha L. Irvin


In the U.S. state of Iowa, the increase in wind power production has motivated interest into the impacts of low-level jets on turbine performance. In this study, two commercial lidar systems were used to sample wind profiles in August 2013. Jets were systematically detected and assigned an intensity rating from 0 (weak) to 3 (strong). Many similarities were found between observed jets and the well-studied Great Plains low-level jet in summer, including average jet heights between 300 and 500 m above ground level, a preference for southerly wind directions, and a nighttime bias for stronger jets. Strong vertical wind shear and veer were observed, as well as veering over time associated with the LLJs. Speed, shear, and veer increases extended into the turbine-rotor layer during intense jets. Ramp events, in which winds rapidly increase or decrease in the rotor layer, were also commonly observed during jet formation periods. The lidar data were also used to evaluate various configurations of the Weather Research and Forecasting Model. Jet occurrence exhibited a stronger dependence on the choice of initial and boundary condition data, while reproduction of the strongest jets was influenced more strongly by the choice of planetary boundary layer scheme. A decomposition of mean model winds suggested that the main forcing mechanism for observed jets was the inertial oscillation. These results have implications for wind energy forecasting and site assessment in the Midwest.

Full access