Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Efrat Morin x
  • Journal of Hydrometeorology x
  • All content x
Clear All Modify Search
Long Yang, James Smith, Mary Lynn Baeck, and Efrat Morin

Abstract

Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States.

Full access
Efrat Morin, Witold F. Krajewski, David C. Goodrich, Xiaogang Gao, and Soroosh Sorooshian

Abstract

Meteorological radar is a remote sensing system that provides rainfall estimations at high spatial and temporal resolutions. The radar-based rainfall intensities (R) are calculated from the observed radar reflectivities (Z). Often, rain gauge rainfall observations are used in combination with the radar data to find the optimal parameters in the ZR transformation equation. The scale dependency of the power-law ZR parameters when estimated from radar reflectivity and rain gauge intensity data is explored herein. The multiplicative (a) and exponent (b) parameters are said to be “scale dependent” if applying the observed and calculated rainfall intensities to objective function at different scale results in different “optimal” parameters. Radar and gauge data were analyzed from convective storms over a midsize, semiarid, and well-equipped watershed. Using the root-mean-square difference (rmsd) objective function, a significant scale dependency was observed. Increased time- and space scales resulted in a considerable increase of the a parameter and decrease of the b parameter. Two sources of uncertainties related to scale dependency were examined: 1) observational uncertainties, which were studied both experimentally and with simplified models that allow representation of observation errors; and 2) model uncertainties. It was found that observational errors are mainly (but not only) associated with positive bias of the b parameter that is reduced with integration, at least for small scales. Model errors also result in scale dependency, but the trend is less systematic, as in the case of observational errors. It is concluded that identification of optimal scale for ZR relationship determination requires further knowledge of reflectivity and rain-intensity error structure.

Full access
Moshe Armon, Elad Dente, James A. Smith, Yehouda Enzel, and Efrat Morin

Abstract

Rainfall in the Levant drylands is scarce but can potentially generate high-magnitude flash floods. Rainstorms are caused by distinct synoptic-scale circulation patterns: Mediterranean cyclone (MC), active Red Sea trough (ARST), and subtropical jet stream (STJ) disturbances, also termed tropical plumes (TPs). The unique spatiotemporal characteristics of rainstorms and floods for each circulation pattern were identified. Meteorological reanalyses, quantitative precipitation estimates from weather radars, hydrological data, and indicators of geomorphic changes from remote sensing imagery were used to characterize the chain of hydrometeorological processes leading to distinct flood patterns in the region. Significant differences in the hydrometeorology of these three flood-producing synoptic systems were identified: MC storms draw moisture from the Mediterranean and generate moderate rainfall in the northern part of the region. ARST and TP storms transfer large amounts of moisture from the south, which is converted to rainfall in the hyperarid southernmost parts of the Levant. ARST rainfall is local and intense, whereas TP rainfall is widespread and prolonged due to high precipitation efficiency and large-scale forcing. Thus, TP rainfall generates high-magnitude floods in the largest catchments; integration of numerous basins leads to sediment feeding from the south into the Dead Sea, exhibited in large sediment plumes. Anecdotal observations of the channel with the largest catchment in the region (Nahal HaArava) indicate that TP floods account for noticeable geomorphic changes in the channel. It provides insights into past intervals of increased flash flood frequency characterized by episodes of marked hydrogeomorphic work; such an increase is especially expected during intervals of southerly situated and southwesterly oriented STJs.

Full access
Long Yang, James Smith, Mary Lynn Baeck, Efrat Morin, and David C. Goodrich

Abstract

The hydroclimatology, hydrometeorology, and hydrology of flash floods in the arid/semiarid southwestern United States are examined through empirical analyses of long-term, high-resolution rainfall and stream gauging observations, together with hydrological modeling analyses of the 19 August 2014 storm based on the Kinematic Runoff and Erosion Model (KINEROS2). The analyses presented here are centered on identifying the structure and evolution of flood-producing storms, as well as the interactions of space–time rainfall variability and basin characteristics in determining the upper-tail properties of rainfall and flood magnitudes over this region. This study focuses on four watersheds in Maricopa County, Arizona, with contrasting geomorphological properties. Flash floods over central Arizona are concentrated in both time and space, reflecting controls of the North American monsoon and complex terrain. Thunderstorm systems during the North American monsoon, as represented by the 19 August 2014 storm, are the dominant flood agents that determine the upper tail of flood frequency over central Arizona and that also shape the envelope curve of floods for watersheds smaller than 250 km2. Flood response for the 19 August 2014 storm is associated with storm elements of comparable spatial extent to the drainage area and slow movement for the three compact, headwater watersheds. Flood response for the elongated and relatively flat Skunk Creek highlights the importance of the spatial distribution of rainfall for transmission losses in arid/semiarid watersheds.

Full access
Nadav Peleg, Francesco Marra, Simone Fatichi, Peter Molnar, Efrat Morin, Ashish Sharma, and Paolo Burlando

Abstract

This study contributes to the understanding of the relationship between air temperature and convection by analyzing the characteristics of rainfall at the storm and convective rain cell scales. High spatial–temporal resolution (1 km, 5 min) estimates from a uniquely long weather radar record (24 years) were coupled with near-surface air temperature over Mediterranean and semiarid regions in the eastern Mediterranean. In the examined temperature range (5°–25°C), the peak intensity of individual convective rain cells was found to increase with temperature, but at a lower rate than the 7%°C−1 scaling expected from the Clausius–Clapeyron relation, while the area of the individual convective rain cells slightly decreases or, at most, remains unchanged. At the storm scale, the areal convective rainfall was found to increase with warmer temperatures, whereas the areal nonconvective rainfall and the stormwide area decrease. This suggests an enhanced moisture convergence from the stormwide extent toward the convective rain cells. Results indicate a reduction in the total rainfall amounts and an increased heterogeneity of the spatial structure of the storm rainfall for temperatures increasing up to 25°C. Thermodynamic conditions, analyzed using convective available potential energy, were determined to be similar between Mediterranean and semiarid regions. Limitations in the atmospheric moisture availability when shifting from Mediterranean to semiarid climates were detected and explain the suppression of the intensity of the convective rain cells when moving toward drier regions. The relationships obtained in this study are relevant for nearby regions characterized by Mediterranean and semiarid climates.

Open access