Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Elisa Manzini x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
Elisa Manzini and Kevin Hamilton

Abstract

The excitation and propagation of equatorial planetary waves and inertia-gravity waves were studied by comparing simulations from the comprehensive GFDL troposphere-stratosphere-mesosphere SKYHI general circulation model (GCM) and from a linear primitive equation model with the same domain and numerical resolution. The basic state of the linear model is time dependent and is derived from the mean zonal wind and temperature obtained from a simulation with the full SKYHI model. The latent and convective heating fields of this SKYHI integration are used as the forcing for the linear model in a parallel simulation.

The wavelength and frequency characteristics of the prominent vertically propagating equatorial Kelvin and Rossby-gravity waves are remarkably similar in the linear model and in SKYHI. Amplitudes are also similar in the lower stratosphere, indicating that the latent and convective heating is the dominant mechanism producing equatorial wave activity in the GCM. The amplitude of these waves in the upper stratosphere and mesosphere is larger in the linear model than in SKYHI. Given that the linear and SKYHI models have comparable radiative damping and horizontal subgrid scale diffusion, it appears that the wave amplitudes in SKYHI are limited by some nonlinear saturation, possibly involving the subgrid-scale vertical mixing.

At low latitudes the linear model reproduces the flux of upward-propagating inertia-gravity waves seen in the full model. The results also show that a significant fraction of the inertia-gravity wave activity found in the midlatitude mesosphere of the SKYHI model can be accounted for by tropical convective heating.

The global-scale Rossby normal modes seen in observations were also identified in the analyses of westward-propagating planetary waves in both models. They are of realistic amplitude in the SKYHI simulation but are much weaker in the linear model. Thus, it appears that latent and convective heating is not the main source of excitation for the Rossby normal modes.

Full access
Martin Charron and Elisa Manzini

Abstract

Current parameterizations of the gravity wave processes that are relevant to middle atmosphere general circulation modeling need to have specified somewhere in the lower atmosphere a number of characteristics of the gravity wave spectrum that arise from different possible gravity wave sources (i.e., the so-called gravity wave source spectrum). The aim of this study is to take into account in the specification of the gravity wave source spectrum a space and time modulation of the gravity wave wind variance and propagation direction associated with the occurrence of frontal systems. Given that fronts are poorly resolved at the truncations commonly used in middle atmosphere models (typically T21–T42), first a method is devised to diagnose conditions that are considered to be the precursor of frontogenesis in a space and time-dependent low-resolution flow. This is achieved by evaluating horizontal isotherm compression due to flow deformation and convergence. Second, when particular conditions are satisfied, the precursor to frontogenesis is used as an indicator of subgrid-scale gravity wave emission in the model. Third, the wind variance and the propagation direction of the gravity waves at the source level are specified according to empirical evidences of frontal generation of gravity waves. The MAECHAM4 middle atmosphere response to this gravity wave forcing is presented. The study is restricted to fronts since they are thought to be one of the major nonstationary gravity wave sources in the extratropics, other gravity wave source mechanisms being left for later examination.

Full access