Search Results

You are looking at 1 - 10 of 21 items for :

  • Author or Editor: Elizabeth A. Barnes x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Elizabeth A. Barnes and Randal J. Barnes

Abstract

Two common approaches for estimating a linear trend are 1) simple linear regression and 2) the epoch difference with possibly unequal epoch lengths. The epoch difference estimator for epochs of length M is defined as the difference between the average value over the last M time steps and the average value over the first M time steps divided by NM, where N is the length of the time series. Both simple linear regression and the epoch difference are unbiased estimators for the trend; however, it is demonstrated that the variance of the linear regression estimator is always smaller than the variance of the epoch difference estimator for first-order autoregressive [AR(1)] time series with lag-1 autocorrelations less than about 0.85. It is further shown that under most circumstances if the epoch difference estimator is applied, the optimal epoch lengths are equal and approximately one-third the length of the time series. Additional results are given for the optimal epoch length at one end when the epoch length at the other end is constrained.

Full access
Elizabeth A. Barnes and Lorenzo Polvani

Abstract

This work documents how the midlatitude, eddy-driven jets respond to climate change using model output from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors consider separately the North Atlantic, the North Pacific, and the Southern Hemisphere jets. The analysis is not limited to annual-mean changes in the latitude and speed of the jets, but also explores how the variability of each jet changes with increased greenhouse gases.

All jets are found to migrate poleward with climate change: the Southern Hemisphere jet shifts poleward by 2° of latitude between the historical period and the end of the twenty-first century in the representative concentration pathway 8.5 (RCP8.5) scenario, whereas both Northern Hemisphere jets shift by only 1°. In addition, the speed of the Southern Hemisphere jet is found to increase markedly (by 1.2 m s−1 between 850 and 700 hPa), while the speed remains nearly constant for both jets in the Northern Hemisphere.

More importantly, it is found that the patterns of jet variability are a strong function of the jet position in all three sectors of the globe, and as the jets shift poleward the patterns of variability change. Specifically, for the Southern Hemisphere and the North Atlantic jets, the variability becomes less of a north–south wobbling and more of a pulsing (i.e., variation in jet speed). In contrast, for the North Pacific jet, the variability becomes less of a pulsing and more of a north–south wobbling. These different responses can be understood in terms of Rossby wave breaking, allowing the authors to explain most of the projected jet changes within a single dynamical framework.

Full access
Bryn Ronalds and Elizabeth A. Barnes

Abstract

Previous studies have suggested that, in the zonal mean, the climatological Northern Hemisphere wintertime eddy-driven jet streams will weaken and shift equatorward in response to Arctic amplification and sea ice loss. However, multiple studies have also pointed out that this response has strong regional differences across the two ocean basins, with the North Atlantic jet stream generally weakening across models and the North Pacific jet stream showing signs of strengthening. Based on the zonal wind response with a fully coupled model, this work sets up two case studies using a barotropic model to test a dynamical mechanism that can explain the differences in zonal wind response in the North Pacific versus the North Atlantic. Results indicate that the differences between the two basins are due, at least in part, to differences in the proximity of the jet streams to the sea ice loss, and that in both cases the eddies act to increase the jet speed via changes in wave breaking location and frequency. Thus, while baroclinic arguments may account for an initial reduction in the midlatitude winds through thermal wind balance, eddy–mean flow feedbacks are likely instrumental in determining the final total response and actually act to strengthen the eddy-driven jet stream.

Full access
Marie C. McGraw and Elizabeth A. Barnes

ABSTRACT

Arctic–midlatitude teleconnections are complex and multifaceted. By design, targeted modeling studies typically focus only on one direction of influence—usually, the midlatitude atmospheric response to a changing Arctic. The two-way, coupled feedbacks between the Arctic and the midlatitude circulation on submonthly time scales are explored using a regularized regression model formulated around Granger causality. The regularized regression model indicates that there are regions in which Arctic temperature drives a midlatitude circulation response, and regions in which the midlatitude circulation drives a response in the Arctic; however, these regions rarely overlap. In many regions, on submonthly time scales, the midlatitude circulation drives Arctic temperature variability, highlighting the important role the midlatitude circulation can play in impacting the Arctic. In particular, the regularized regression model results support recent work that indicates that the observed high pressure anomalies over Eurasia drive a significant response in the Arctic on submonthly time scales, rather than being driven by the Arctic.

Free access
Marie C. McGraw and Elizabeth A. Barnes

Abstract

A dry dynamical core is used to investigate the seasonal sensitivity of the circulation to two idealized thermal forcings: a tropical upper-tropospheric heating and a polar lower-tropospheric heating. The thermal forcings are held constant, and the response of the circulation in each month of the year is explored. First, the circulation responses to tropical warming and polar warming are studied separately, and then the response to the simultaneously applied forcings is analyzed. Finally, the seasonality of the internal variability of the circulation is explored as a possible mechanism to explain the seasonality of the responses. The primary results of these experiments are as follows: 1) There is a seasonal sensitivity in the circulation response to both the tropical and polar forcings. 2) The jet position response to each forcing is greatest in the transition seasons, and the jet speed response exhibits a seasonal sensitivity to both forcings, although the seasonal sensitivities are not the same. 3) The circulation response is nonlinear in the transition seasons, but approximately linear in the winter months. 4) The internal variability of the unforced circulation exhibits a seasonal sensitivity that may partly explain the seasonal sensitivity of the forced response. The seasonality of the internal variability of daily MERRA reanalysis data is compared to that of the model, demonstrating that the broad conclusions drawn from this idealized modeling study may be useful for understanding the jet response to anthropogenic forcing.

Full access
Elizabeth A. Barnes and Isla R. Simpson

Abstract

Near-surface Arctic warming has been shown to impact the midlatitude jet streams through the use of carefully designed model simulations with and without Arctic sea ice loss. In this work, a Granger causality regression approach is taken to quantify the response of the zonal wind to variability of near-surface Arctic temperatures on subseasonal time scales across the CMIP5 models. Using this technique, a robust influence of regional Arctic warming on the North Atlantic and North Pacific jet stream positions, speeds, and zonal winds is demonstrated. However, Arctic temperatures only explain an additional 3%–5% of the variance of the winds after accounting for the variance associated with the persistence of the wind anomalies from previous weeks. In terms of the jet stream response, the North Pacific and North Atlantic jet streams consistently shift equatorward in response to Arctic warming but also strengthen, rather than weaken, during most months of the year. Furthermore, the sensitivity of the jet stream position and strength to Arctic warming is shown to be a strong function of season. Specifically, in both ocean basins, the jets shift farthest equatorward in the summer months. It is argued that this seasonal sensitivity is due to the Arctic-warming-induced wind anomalies remaining relatively fixed in latitude, while the climatological jet migrates in and out of the anomalies throughout the annual cycle. Based on these results, model differences in the climatological jet stream position are shown to lead to differences in the jet stream position’s sensitivity to Arctic warming.

Open access
Bryn Ronalds, Elizabeth Barnes, and Pedram Hassanzadeh
Full access
Elizabeth A. Barnes and Lorenzo M. Polvani

Abstract

Recent studies have hypothesized that Arctic amplification, the enhanced warming of the Arctic region compared to the rest of the globe, will cause changes in midlatitude weather over the twenty-first century. This study exploits the recently completed phase 5 of the Coupled Model Intercomparison Project (CMIP5) and examines 27 state-of-the-art climate models to determine if their projected changes in the midlatitude circulation are consistent with the hypothesized impact of Arctic amplification over North America and the North Atlantic.

Under the largest future greenhouse forcing (RCP8.5), it is found that every model, in every season, exhibits Arctic amplification by 2100. At the same time, the projected circulation responses are either opposite in sign to those hypothesized or too widely spread among the models to discern any robust change. However, in a few seasons and for some of the circulation metrics examined, correlations are found between the model spread in Arctic amplification and the model spread in the projected circulation changes. Therefore, while the CMIP5 models offer some evidence that future Arctic warming may be able to modulate some aspects of the midlatitude circulation response in some seasons, the analysis herein leads to the conclusion that the net circulation response in the future is unlikely to be determined solely—or even primarily—by Arctic warming according to the sequence of events recently hypothesized.

Full access
Marie C. McGraw and Elizabeth A. Barnes

Abstract

In climate variability studies, lagged linear regression is frequently used to infer causality. While lagged linear regression analysis can often provide valuable information about causal relationships, lagged regression is also susceptible to overreporting significant relationships when one or more of the variables has substantial memory (autocorrelation). Granger causality analysis takes into account the memory of the data and is therefore not susceptible to this issue. A simple Monte Carlo example highlights the advantages of Granger causality, compared to traditional lagged linear regression analysis in situations with one or more highly autocorrelated variables. Differences between the two approaches are further explored in two illustrative examples applicable to large-scale climate variability studies. Given that Granger causality is straightforward to calculate, Granger causality analysis may be preferable to traditional lagged regression analysis when one or more datasets has large memory.

Full access
Elizabeth A. Barnes and Dennis L. Hartmann

Abstract

The correlation lengths of vorticity anomalies from temporal averages are examined in the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis dataset. It is shown that, in the annual mean, eddies in the Southern Hemisphere are significantly larger than those in the Northern Hemisphere. The eddy vorticity lengths exhibit a strong seasonal cycle, with the largest scales occurring in the winter season. The maximum zonal eddy lengths closely follow the contours of the strong upper-level winds, while the maximum meridional lengths are found in jet exit regions and in the stratosphere.

Full access