Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Fengge Su x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Lei Wang, Tandong Yao, Chenhao Chai, Lan Cuo, Fengge Su, Fan Zhang, Zhijun Yao, Yinsheng Zhang, Xiuping Li, Jia Qi, Zhidan Hu, Jingshi Liu, and Yuanwei Wang

Abstract

Monitoring changes in river runoff at the Third Pole (TP) is important because rivers in this region support millions of inhabitants in Asia and are very sensitive to climate change. Under the influence of climate change and intensified cryospheric melt, river runoff has changed markedly at the TP, with significant effects on the spatial and temporal water resource distribution that threaten water supply and food security for people living downstream. Despite some in situ observations and discharge estimates from state-of-the-art remote sensing technology, the total river runoff (TRR) for the TP has never been reliably quantified, and its response to climate change remains unclear. As part of the Chinese Academy of Sciences’ “Pan-Third Pole Environment Study for a Green Silk Road,” the TP-River project aims to construct a comprehensive runoff observation network at mountain outlets (where rivers leave the mountains and enter the plains) for 13 major rivers in the TP region, thereby enabling TRR to be accurately quantified. The project also integrates discharge estimates from remote sensing and cryosphere–hydrology modeling to investigate long-term changes in TRR and the relationship between the TRR variations and westerly/monsoon. Based on recent efforts, the project provides the first estimate (656 ± 23 billion m3) of annual TRR for the 13 TP rivers in 2018. The annual river runoff at the mountain outlets varies widely between the different TP rivers, ranging from 2 to 176 billion m3, with higher values mainly corresponding to rivers in the Indian monsoon domain, rather than in the westerly domain.

Open access