Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Fengge Su x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Fengge Su, Xiaolan Duan, Deliang Chen, Zhenchun Hao, and Lan Cuo

Abstract

The performance of 24 GCMs available in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) is evaluated over the eastern Tibetan Plateau (TP) by comparing the model outputs with ground observations for the period 1961–2005. The twenty-first century trends of precipitation and temperature based on the GCMs’ projections over the TP are also analyzed. The results suggest that for temperature most GCMs reasonably capture the climatological patterns and spatial variations of the observed climate. However, the majority of the models have cold biases, with a mean underestimation of 1.1°–2.5°C for the months December–May, and less than 1°C for June–October. For precipitation, the simulations of all models overestimate the observations in climatological annual means by 62.0%–183.0%, and only half of the 24 GCMs are able to reproduce the observed seasonal pattern, which demonstrates a critical need to improve precipitation-related processes in these models. All models produce a warming trend in the twenty-first century under the Representative Concentration Pathway 8.5 (rcp8.5) scenario; in contrast, the rcp2.6 scenario predicts a lower average warming rate for the near term, and a small cooling trend in the long-term period with the decreasing radiative forcing. In the near term, the projected precipitation change is about 3.2% higher than the 1961–2005 annual mean, whereas in the long term the precipitation is projected to increase 6.0% under rcp2.6 and 12.0% under the rcp8.5 scenario. Relative to the 1961–2005 mean, the annual temperature is projected to increase by 1.2°–1.3°C in the short term; the warmings under the rcp2.6 and rcp8.5 scenarios are 1.8° and 4.1°C, respectively, for the long term.

Full access
Lan Cuo, Yongxin Zhang, Qingchun Wang, Leilei Zhang, Bingrong Zhou, Zhenchun Hao, and Fengge Su

Abstract

Gridded daily precipitation, temperature minima and maxima, and wind speed are generated for the northern Tibetan Plateau (NTP) for 1957–2009 using observations from 81 surface stations. Evaluation reveals reasonable quality and suitability of the gridded data for climate and hydrology analysis. The Mann–Kendall trends of various climate elements of the gridded data show that NTP has in general experienced annually increasing temperature and decreasing wind speed but spatially varied precipitation changes. The northwest (northeast) NTP became dryer (wetter), while there were insignificant changes in precipitation in the south. Snowfall has decreased along high mountain ranges during the wet and warm season. Averaged over the entire NTP, snowfall, temperature minima and maxima, and wind speed experienced statistically significant linear trends at rates of −0.52 mm yr−1 (water equivalent), +0.04°C yr−1, +0.03°C yr−1, and −0.01 m s−1 yr−1, respectively. Correlation between precipitation/wind speed and climate indices characterizing large-scale weather systems for four subregions in NTP reveals that changes in precipitation and wind speed in winter can be attributed to changes in the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), the East Asian westerly jet (WJ), and the El Niño–Southern Oscillation (ENSO) (wind speed only). In summer, the changes in precipitation and wind are only weakly related to these indices. It is speculated that in addition to the NAO, AO, ENSO, WJ, and the East and South Asian summer monsoons, local weather systems also play important roles.

Full access