Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: G. Abramowitz x
  • Journal of Hydrometeorology x
  • All content x
Clear All Modify Search
Maik Renner, Axel Kleidon, Martyn Clark, Bart Nijssen, Marvin Heidkamp, Martin Best, and Gab Abramowitz


The diurnal cycle of solar radiation represents the strongest energetic forcing and dominates the exchange of heat and mass of the land surface with the atmosphere. This diurnal heat redistribution represents a core of land–atmosphere coupling that should be accurately represented in land surface models (LSMs), which are critical parts of weather and climate models. We employ a diagnostic model evaluation approach using a signature-based metric that describes the diurnal variation of heat fluxes. The metric is obtained by decomposing the diurnal variation of surface heat fluxes into their direct response and the phase lag to incoming solar radiation. We employ the output of 13 different LSMs driven with meteorological forcing of 20 FLUXNET sites (PLUMBER dataset). All LSMs show a poor representation of the evaporative fraction and thus the diurnal magnitude of the sensible and latent heat flux under cloud-free conditions. In addition, we find that the diurnal phase of both heat fluxes is poorly represented. The best performing model only reproduces 33% of the evaluated evaporative conditions across the sites. The poor performance of the diurnal cycle of turbulent heat exchange appears to be linked to how models solve for the surface energy balance and redistribute heat into the subsurface. We conclude that a systematic evaluation of diurnal signatures is likely to help to improve the simulated diurnal cycle, better represent land–atmosphere interactions, and therefore improve simulations of the near-surface climate.

Open access
A. M. Ukkola, A. J. Pitman, M. G. De Kauwe, G. Abramowitz, N. Herger, J. P. Evans, and M. Decker


Global climate models play an important role in quantifying past and projecting future changes in drought. Previous studies have pointed to shortcomings in these models for simulating droughts, but systematic evaluation of their level of agreement has been limited. Here, historical simulations (1950–2004) for 20 models from the latest Coupled Model Intercomparison Project (CMIP5) were analyzed for a variety of drought metrics and thresholds using a standardized drought index. Model agreement was investigated for different types of drought (precipitation, runoff, and soil moisture) and how this varied with drought severity and duration. At the global scale, climate models were shown to agree well on most precipitation drought metrics, but systematically underestimated precipitation drought intensity compared to observations. Conversely, simulated runoff and soil moisture droughts varied significantly across models, particularly for intensity. Differences in precipitation simulations were found to explain model differences in runoff and soil moisture drought metrics over some regions, but predominantly with respect to drought intensity. This suggests it is insufficient to evaluate models for precipitation droughts to increase confidence in model performance for other types of drought. This study shows large but metric-dependent discrepancies in CMIP5 for modeling different types of droughts that relate strongly to the component models (i.e., atmospheric or land surface scheme) used in the coupled modeling systems. Our results point to a need to consider multiple models in drought impact studies to account for high model uncertainties.

Full access
M. J. Best, G. Abramowitz, H. R. Johnson, A. J. Pitman, G. Balsamo, A. Boone, M. Cuntz, B. Decharme, P. A. Dirmeyer, J. Dong, M. Ek, Z. Guo, V. Haverd, B. J. J. van den Hurk, G. S. Nearing, B. Pak, C. Peters-Lidard, J. A. Santanello Jr., L. Stevens, and N. Vuichard


The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison. Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different approach in that it sets expectations of performance in a range of metrics a priori—before model simulations are performed. This can lead to very different conclusions about LSM performance. For this study, both simple physically based models and empirical relationships were used as the benchmarks. Simulations were performed with 13 LSMs using atmospheric forcing for 20 sites, and then model performance relative to these benchmarks was examined. Results show that even for commonly used statistical metrics, the LSMs’ performance varies considerably when compared to the different benchmarks. All models outperform the simple physically based benchmarks, but for sensible heat flux the LSMs are themselves outperformed by an out-of-sample linear regression against downward shortwave radiation. While moisture information is clearly central to latent heat flux prediction, the LSMs are still outperformed by a three-variable nonlinear regression that uses instantaneous atmospheric humidity and temperature in addition to downward shortwave radiation. These results highlight the limitations of the prevailing paradigm of LSM evaluation that simply compares an LSM to observations and to other LSMs without a mechanism to objectively quantify the expectations of performance. The authors conclude that their results challenge the conceptual view of energy partitioning at the land surface.

Full access