Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Holger Siebert x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Holger Siebert, Harald Franke, Katrin Lehmann, Rolf Maser, Ewe Wei Saw, Dieter Schell, Raymond A. Shaw, and Manfred Wendisch

Helicopter-based measurements provide an opportunity for probing the finescale dynamics and microphysics of clouds simultaneously in space and time. Due to the low true air speed compared with research aircraft, a helicopter allows for measurements with much higher spatial resolution. To circumvent the influence of the helicopter downwash the autonomous measurement payload Airborne Cloud Turbulence Observation System (ACTOS) is carried as an external cargo 140 m below the helicopter. ACTOS allows for collocated measurements of the dynamical and cloud microphysical parameters with a spatial resolution of better than 10 cm.

The interaction between turbulence and cloud microphysical processes is demonstrated using the following two cloud cases from recent helicopter measurements: i) a cumulus cloud with a low degree of turbulence and without strong vertical dynamics, and, in contrast, ii) an actively growing cloud with increased turbulence and stronger updrafts. The turbulence and microphysical measurements suggest that entrainment at the tops of these two clouds occurs by inhomogeneous and homogeneous mixing, respectively.

Full access
Holger Siebert, Kai-Erik Szodry, Ulrike Egerer, Birgit Wehner, Silvia Henning, Karine Chevalier, Janine Lückerath, Oliver Welz, Kay Weinhold, Felix Lauermann, Matthias Gottschalk, André Ehrlich, Manfred Wendisch, Paulo Fialho, Greg Roberts, Nithin Allwayin, Simeon Schum, Raymond A. Shaw, Claudio Mazzoleni, Lynn Mazzoleni, Jakub L. Nowak, Szymon P. Malinowski, Katarzyna Karpinska, Wojciech Kumala, Dominika Czyzewska, Edward P. Luke, Pavlos Kollias, Robert Wood, and Juan Pedro Mellado


We report on the Azores Stratocumulus Measurements of Radiation, Turbulence and Aerosols (ACORES) campaign, which took place around Graciosa and Pico Islands/Azores in July 2017. The main objective was to investigate the vertical distribution of aerosol particles, stratocumulus microphysical and radiative properties, and turbulence parameters in the eastern North Atlantic. The vertical exchange of mass, momentum, and energy between the free troposphere (FT) and the cloudy marine boundary layer (MBL) was explored over a range of scales from submeters to kilometers. To cover these spatial scales with appropriate measurements, helicopter-borne observations with unprecedented high resolution were realized using the Airborne Cloud Turbulence Observation System (ACTOS) and Spectral Modular Airborne Radiation Measurement System–Helicopter-Borne Observations (SMART-HELIOS) instrumental payloads. The helicopter-borne observations were combined with ground-based aerosol measurements collected at two continuously running field stations on Pico Mountain (2,225 m above sea level, in the FT), and at the Atmospheric Radiation Measurement (ARM) station on Graciosa (at sea level). First findings from the ACORES observations we are discussing in the paper are as follows: (i) we have observed a high variability of the turbulent cloud-top structure on horizontal scales below 100 m with local temperature gradients of up to 4 K over less than 1 m vertical distance, (ii) we have collected strictly collocated radiation measurements supporting the relevance of small-scale processes by revealing significant inhomogeneities in cloud-top brightness temperature to scales well below 100 m, and (iii) we have concluded that aerosol properties are completely different in the MBL and FT with often-complex stratification and frequently observed burst-like new particle formation.

Full access
Manfred Wendisch, Andreas Macke, André Ehrlich, Christof Lüpkes, Mario Mech, Dmitry Chechin, Klaus Dethloff, Carola Barrientos Velasco, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Susanne Crewell, Tobias Donth, Regis Dupuy, Kerstin Ebell, Ulrike Egerer, Ronny Engelmann, Christa Engler, Oliver Eppers, Martin Gehrmann, Xianda Gong, Matthias Gottschalk, Christophe Gourbeyre, Hannes Griesche, Jörg Hartmann, Markus Hartmann, Bernd Heinold, Andreas Herber, Hartmut Herrmann, Georg Heygster, Peter Hoor, Soheila Jafariserajehlou, Evelyn Jäkel, Emma Järvinen, Olivier Jourdan, Udo Kästner, Simonas Kecorius, Erlend M. Knudsen, Franziska Köllner, Jan Kretzschmar, Luca Lelli, Delphine Leroy, Marion Maturilli, Linlu Mei, Stephan Mertes, Guillaume Mioche, Roland Neuber, Marcel Nicolaus, Tatiana Nomokonova, Justus Notholt, Mathias Palm, Manuela van Pinxteren, Johannes Quaas, Philipp Richter, Elena Ruiz-Donoso, Michael Schäfer, Katja Schmieder, Martin Schnaiter, Johannes Schneider, Alfons Schwarzenböck, Patric Seifert, Matthew D. Shupe, Holger Siebert, Gunnar Spreen, Johannes Stapf, Frank Stratmann, Teresa Vogl, André Welti, Heike Wex, Alfred Wiedensohler, Marco Zanatta, and Sebastian Zeppenfeld


Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.

Open access