Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Ian Crawford x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
Zhiqiang Cui, Alan Gadian, Alan Blyth, Jonathan Crosier, and Ian Crawford

Abstract

Observations are presented of the structure of the marine boundary layer (MBL) in the southeastern Pacific made with the U.K. BAe 146 aircraft on 13 November 2008 as it flew at a variety of altitudes along 20°S between the coast of Chile and a buoy 950 km offshore during the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS) Regional Experiment (REx). The purpose of the study is to determine the variations along the 20°S transect in the clouds and boundary layer on this particular day as compared to the typical structure determined from the composite studies. The aircraft flew in three regions on this day: relatively continuous thick stratocumulus clouds, open cells, and closed cells. Results show three particular features. First, the results of the cloud microphysics are consistent with the typical behavior showing a decrease in aerosol particles by a factor of 3–4, and a decrease in cloud droplet number concentration westward from the coast from about 200 to 100 cm−3 or less with a corresponding increase in the concentration of drizzle drops with a maximum in open cells. Sulfate was dominant in the aerosol mass. Second, there was evidence of decoupling of the marine boundary layer that coincided with a change in the cloud type from stratiform to convective. The case differs from the average found in VOCALS in that the decoupling is not consistent with the deepening–warming idea. Precipitation is thought to possibly be the cause instead, suggesting that aerosol might play a controlling role in the cloud–boundary layer structure. Finally, cold pools were observed in the MBL from the dropsonde data.

Full access
Yvonne Boose, Zamin A. Kanji, Monika Kohn, Berko Sierau, Assaf Zipori, Ian Crawford, Gary Lloyd, Nicolas Bukowiecki, Erik Herrmann, Piotr Kupiszewski, Martin Steinbacher, and Ulrike Lohmann

Abstract

Ice nucleating particle (INP) concentrations were measured at the High Altitude Research Station Jungfraujoch, Switzerland, 3580 m above mean sea level during the winter months of 2012, 2013, and 2014 with the Portable Ice Nucleation Chamber (PINC). During the measurement periods, the research station was mostly located in the free troposphere, and particle concentrations were low. At temperature T = 241 K, INP concentrations in the deposition regime [relative humidity with respect to water (RHw) = 93%] were, on average, below 1.09 per standard liter of air (stdL−1; normalized to 1013 hPa and 273 K) and 4.7 ± 8.3 stdL−1 in the condensation regime (RHw = 103%) in winter 2014. The deployment of a particle concentrator upstream of PINC decreased the limit of detection (LOD) by a factor of 3 compared to earlier measurements. The authors discuss a potential bias of INP measurements toward higher concentrations if data below the LOD are disregarded and thus recommend reporting subLOD data in future publications. Saharan dust and more local, basaltic dust mixed with marine aerosol were found to constitute the dominant INP type. Bioaerosols were not observed to play a role in ice nucleation during winter because of their low concentration during this period. The INP concentrations at Jungfraujoch are low in comparison to other studies of INP at this temperature. This represents the first study addressing interannual variations of INP concentrations during winter at one location.

Full access