Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Ilya Slutsker x
  • Journal of Atmospheric and Oceanic Technology x
  • All content x
Clear All Modify Search
Giuseppe Zibordi, Brent N. Holben, Marco Talone, Davide D’Alimonte, Ilya Slutsker, David M. Giles, and Mikhail G. Sorokin

Abstract

The Ocean Color component of the Aerosol Robotic Network (AERONET-OC) supports ocean color related activities such as validation of satellite data products, assessment of atmospheric correction schemes and evaluation of bio-optical models, through globally distributed standardized measurements of water-leaving radiance and aerosol optical depth. In view of duly assisting the AERONET-OC data user community, this work: i. summarizes the latest investigations on a number of scientific issues related to above-water radiometry; ii. emphasizes the network expansion that from 2002 till the end of 2020 integrated 31 effective measurement sites; iii. shows the equivalence of data product accuracy across sites and time for measurements performed with different instrument series; iv. illustrates the variety of water types represented by the network sites ensuring validation activities across a diversity of observation conditions; and v. finally documents the availability of water-leaving radiance data corrected for bidirectional effects applying a method specifically developed for chlorophyll-a dominated waters and an alternative one likely suitable for any water type.

Restricted access
Giuseppe Zibordi, Brent N. Holben, Marco Talone, Davide D’Alimonte, Ilya Slutsker, David M. Giles, and Mikhail G. Sorokin

Abstract

The Ocean Color Component of the Aerosol Robotic Network (AERONET-OC) supports activities related to ocean color such as validation of satellite data products, assessment of atmospheric correction schemes, and evaluation of bio-optical models through globally distributed standardized measurements of water-leaving radiance and aerosol optical depth. In view of duly assisting the AERONET-OC data user community, this work (i) summarizes the latest investigations on a number of scientific issues related to above-water radiometry, (ii) emphasizes the network expansion that from 2002 until the end of 2020 integrated 31 effective measurement sites, (iii) shows the equivalence of data product accuracy across sites and time for measurements performed with different instrument series, (iv) illustrates the variety of water types represented by the network sites ensuring validation activities across a diversity of observation conditions, and (v) documents the availability of water-leaving radiance data corrected for bidirectional effects by applying a method specifically developed for chlorophyll-a-dominated waters and an alternative one that is likely suitable for any water type.

Open access
Giuseppe Zibordi, Frédéric Mélin, Jean-François Berthon, Brent Holben, Ilya Slutsker, David Giles, Davide D’Alimonte, Doug Vandemark, Hui Feng, Gregory Schuster, Bryan E. Fabbri, Seppo Kaitala, and Jukka Seppälä

Abstract

The ocean color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer systems deployed on offshore fixed platforms. The AERONET-OC data products are the normalized water-leaving radiances determined at various center wavelengths in the visible and near-infrared spectral regions. These data complement atmospheric AERONET aerosol products, such as optical thickness, size distribution, single scattering albedo, and phase function. This work describes in detail this new AERONET component and its specific elements including measurement method, instrument calibration, processing scheme, quality assurance, uncertainties, data archive, and products accessibility. Additionally, the atmospheric and bio-optical features of the sites currently included in AERONET-OC are briefly summarized. After illustrating the application of AERONET-OC data to the validation of primary satellite products over a variety of complex coastal waters, recommendations are then provided for the identification of new deployment sites most suitable to support satellite ocean color missions.

Full access