Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Imke Durre x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Imke Durre

In atmospheric science, information is often communicated in visual form. Maps, radar images, and satellite imagery are widely used to display daily weather forecasts and current conditions. Textbooks, professional journals, and conference presentations are rich in figures that illustrate concepts and research findings. Given this preponderance of visual material, students with visual impairments may be tempted to assume that atmospheric science is not a suitable field for them. In fact, however, thanks to the widespread use of the computer and the availability of assistive technology, many atmospheric science careers are well suited to students with visual impairments who have acquired the necessary skills. Both personal experience and literature suggest that for people with visual impairments, success in science hinges upon the use of effective modes of communication between them and their sighted instructors and colleagues. With these considerations in mind, the author discusses relevant assistive technology and adaptive strategies, presents techniques for ensuring the accessibility of materials and programs to auditory and tactile learners, and suggests a collaborative approach to implementing reasonable accommodations. Together, these strategies create an environment in which the visually impaired student or employee can be expected to perform at the same level as everyone else.

Full access
Imke Durre and Michael F. Squires

Abstract

Are we going to have a white Christmas? That is a question that scientists at the National Oceanic and Atmospheric Administration (NOAA) receive each autumn from members of the media and general public. NOAA personnel typically respond by way of a press release and map depicting the climatological probability of observing snow on the ground on 25 December at stations across the contiguous United States. This map has become one of the most popular applications of NOAA’s 1981–2010 U.S. Climate Normals.

The purpose of this paper is to expand upon the annual press release in two ways. First, the methodology for empirically calculating the probabilities of snow on the ground is documented. Second, additional maps describing the median snow depth on 25 December as well as the probability and amount of snowfall are presented.

The results are consistent with a climatologist’s intuitive expectations. In the Sierras, Cascades, the leeward side of the Great Lakes, and northern New England, snow cover is a near certainty. In these regions, most precipitation falls as snow, and the probability of snowfall can exceed 25%. At higher elevations of the Rocky Mountains and at many locations between the northern Rockies and New England, snowfall is considerably less frequent on Christmas Day, yet the probability of snow on the ground exceeds 50%. For those who would like to escape the snow, the best places to be in late December are in Southern California, the lower elevations of the Southwest, and Florida.

Full access
Imke Durre, Mona Behl, Rebecca Haacker, and Redina Herman

Abstract

In 2014, the American Meteorological Society (AMS) conducted the latest in its sequence of surveys of its membership. Included in the survey were a number of questions pertaining to the value that members derive from the Society’s products and services. Asked to classify the value of their AMS membership dues as “excellent,” “satisfactory,” or “not good value,” 93% chose at least “satisfactory,” including 36% who selected “excellent.” The three most frequently cited reasons for joining the AMS were attendance at meetings, access to publications, and staying informed. Consistent with these reasons, AMS-sponsored scientific conferences, AMS journals, and BAMS were found to be at least somewhat valuable to more than 90% of survey participants. Those who expressed some level of dissatisfaction cited as reasons the cost of membership dues, travel and registration costs associated with AMS conferences, or a feeling of not being included in the Society. These findings may be pertinent to the Society’s long-term planning for its offering of products and services.

Open access
Scott Applequist, Anthony Arguez, Imke Durre, Michael F. Squires, Russell S. Vose, and Xungang Yin

The 1981–2010 U.S. Climate Normals released by the National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) include a suite of descriptive statistics based on hourly observations. For each hour and day of the year, statistics of temperature, dew point, mean sea level pressure, wind, clouds, heat index, wind chill, and heating and cooling degree hours are provided as 30-year averages, frequencies of occurrence, and percentiles. These hourly normals are available for 262 locations, primarily major airports, from across the United States and its Pacific territories. We encourage use of these products specifically for examination of the diurnal cycle of a particular variable, and how that change may shift over the annual cycle.

Full access
Peter E. Goble, Nolan J. Doesken, Imke Durre, Russ S. Schumacher, Abigail Stewart, and Julian Turner

Abstract

Every day, thousands of volunteers across the United States report the amount of precipitation they have received in the past 24 hours. This study focuses on the largest of these volunteer-submitted reports for each day, using precipitation measurements from the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) from January 2010 to December 2017 as well as observations from the U.S. Cooperative Observer Program (COOP) network from January 1981 through December 2017. Results provide clarity on spatial variability, temporal variability, and seasonal cycle of contiguous U.S daily precipitation extremes (DPEs). During 2010–17, the DPEs ranged from 11 mm on 28 March 2013 in Oregon to 635 mm on 27 August 2017 in Texas during Hurricane Harvey. Coastal states are most prone to high daily precipitation totals, especially those bordering the Gulf of Mexico or Atlantic Gulf Stream. The average DPE value varies with season; it is greater than 175 mm in late August and less than 100 mm through meteorological winter. These observations also show that location of the DPE varies with season as well. For example, 28.5% of February extremes fall in Pacific states, whereas all August extremes occur east of that region. Perhaps most importantly, these findings demonstrate strength in numbers. The large daily sample size of CoCoRaHS and COOP networks forms a basis for monitoring, mapping, and categorizing DPEs, and other aspects of extreme precipitation, with considerable spatial detail.

Free access
Anthony Arguez, Imke Durre, Scott Applequist, Russell S. Vose, Michael F. Squires, Xungang Yin, Richard R. Heim Jr., and Timothy W. Owen

The National Oceanic and Atmospheric Administration (NOAA) released the 1981–2010 U.S. Climate Normals in July 2011, representing the latest decadal installment of this long-standing product line. Climatic averages (and other statistics) of temperature, precipitation, snowfall, and numerous derived quantities were calculated for ~9,800 stations operated by the U.S. National Weather Service (NWS). They include estimated normals, or “quasi normals,” for approximately 2,000 active short-record stations such as those in the U.S. Climate Reference Network. The 1981–2010 installment features several new products and methodological enhancements: 1) state-of-the-art temperature homogenization at the monthly scale, 2) extensive utilization of quality-controlled daily climate data, 3) new statistical approaches for calculating daily temperature normals and heating and cooling degree days, and 4) a comprehensive suite of precipitation, snowfall, and snow depth statistics. This paper provides a general overview of this new suite of climate normals products.

Full access

CREATING CLIMATE REFERENCE DATASETS

CARDS Workshop on Adjusting Radiosonde Temperature Data for Climate Monitoring

Melissa Free, Imke Durre, Enric Aguilar, Dian Seidel, Thomas C. Peterson, Robert E. Eskridge, James K. Luers, David Parker, Margaret Gordon, John Lanzante, Stephen Klein, John Christy, Steven Schroeder, Brian Soden, Larry M. McMillin, and Elizabeth Weatherhead

Homogeneous upper-air temperature time series are necessary for climate change detection and attribution. About 20 participants met at the National Climatic Data Center in Asheville, North Carolina on 11–12 October 2000 to discuss methods of adjusting radiosonde data for inhomogeneities arising from instrument and other changes. Representatives of several research groups described their methods for identifying change points and adjusting temperature time series and compared the results of applying these methods to data from 12 radiosonde stations. The limited agreement among these results and the potential impact of these adjustments on upper-air trends estimates indicate a need for further work in this area and for greater attention to homogeneity issues in planning future changes in radiosonde observations.

Full access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Free access