Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: J. D. Kepert x
  • Journal of Applied Meteorology and Climatology x
  • All content x
Clear All Modify Search
Paul A. Gregory, Lawrie J. Rikus, and Jeffrey D. Kepert


The ability of the Australian Bureau of Meteorology’s numerical weather prediction (NWP) systems to predict solar exposure (or insolation) was tested, with the aim of predicting large-scale solar energy several days in advance. The bureau’s Limited Area Prediction System (LAPS) and Mesoscale Assimilation model (MALAPS) were examined for the 2008 calendar year. Comparisons were made with estimates of solar exposure obtained from satellites for the whole Australian continent, as well as site-based exposure observations taken at eight locations across Australia. Monthly-averaged forecast solar exposure over Australia showed good agreement with satellite estimates; the day-to-day exposure values showed some consistent biases, however. Differences in forecast solar exposure were attributed to incorrect representation of convective cloud in the tropics during summer as well as clouds formed by orographic lifting over mountainous areas in southeastern Australia. Comparison with site-based exposure observations was conducted on a daily and hourly basis. The site-based exposure measurements were consistent with the findings from the analysis against satellite data. Hourly analysis at selected sites confirmed that models predicted the solar exposure accurately through low-level clouds (e.g., cumulus), provided that the forecast cloud coverage was accurate. The NWP models struggle to predict solar exposure through middle and high clouds formed by ice crystals (e.g., altocumulus). Sites located in central Australia showed that the monthly-averaged errors in daily solar exposure forecast by the NWP systems were within 5%–10%, up to two days in advance. These errors increased to 20%–30% in the tropics and coastal areas.

Full access
Bruce A. Harper, John D. Holmes, Jeffrey D. Kepert, Luciano B. Mason, and Peter J. Vickery


Cook and Nicholls recently argued in this journal that the city of Darwin (Northern Territory), Australia, should be located in wind region D rather than in the current region C in the Australian/New Zealand Standard AS/NZS 1170.2 wind actions standard, in which region D has significantly higher risk. These comments critically examine the methods used by Cook and Nicholls and find serious flaws in them, sufficient to invalidate their conclusions. Specific flaws include 1) invalid assumptions in their analysis method, including that cyclones are assumed to be at the maximum intensity along their entire path across the sampling circle even after they have crossed extensive land areas; 2) a lack of verification that the simulated cyclone tracks are consistent with the known climatological data and in particular that the annual rate of simulated cyclones at each station greatly exceeds the numbers recorded for the entire Australian region; and 3) the apparent omission of key cyclones when comparing the risk at Darwin with two other locations. It is shown here that the number of cyclones that have affected Port Hedland (Western Australia), a site in Australia’s region D, greatly exceeds the number that have influenced Darwin over the same period for any chosen threshold of intensity. Analysis of the recorded gusts from anemometers at Port Hedland and Darwin that is presented here further supports this result. On the basis of this evidence, the authors conclude that Darwin’s tropical cyclone wind risk is adequately described by its current location in region C.

Full access