Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: J. Navarro x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Etor E. Lucio-Eceiza, J. Fidel González-Rouco, Elena García-Bustamante, Jorge Navarro, Cristina Rojas-Labanda, and Hugo Beltrami

Abstract

The variability of the surface zonal and meridional wind components over northeastern North America during June–October is analyzed through a statistical downscaling (SD) approach that relates the main wind and large-scale circulation modes. An observational surface wind dataset of 525 sites over 1953–2010 provides the local information. Twelve global reanalyses provide the large-scale information. The large-to-local variability of the wind field can be explained, to a large extent, in terms of four coupled modes of circulation explaining a similar amount of variance. The SD method is mostly sensitive to the number of retained modes and subregionally to the large-scale information variable, but not to the reanalysis source. The SD methodological uncertainty based on the use of multiple configurations is directly related to the variability of the wind, similar in relative terms for both components. With an adequate choice of parameters the SD estimates provide more realistic variances than the reanalysis wind, although their correlations with respect to observations are lower than the latter. Additionally, while these different SD estimations are very similar on the reanalysis used, the various reanalysis wind fields show noticeable differences, especially in their variances. The wind variability is reconstructed back to 1850, making use of century-long reanalyses and two additional SLP gridded datasets, which allows estimating the variability at decadal to multidecadal time scales. Recent negative (significant) trends in the zonal component do not stand out in the multidecadal context, but they are consistent with a global stilling process, and are partially attributable to changes in the large-scale dynamics.

Free access
Claire Scannell, Ben B. B. Booth, Nick J. Dunstone, David P. Rowell, Dan J. Bernie, Matthew Kasoar, Apostolos Voulgarakis, Laura J. Wilcox, Juan C. Acosta Navarro, Øyvind Seland, and David J. Paynter

Abstract

Past changes in global industrial aerosol emissions have played a significant role in historical shifts in African rainfall, and yet assessment of the impact on African rainfall of near-term (10–40 yr) potential aerosol emission pathways remains largely unexplored. While existing literature links future aerosol declines to a northward shift of Sahel rainfall, existing climate projections rely on RCP scenarios that do not explore the range of air quality drivers. Here we present projections from two emission scenarios that better envelop the range of potential aerosol emissions. More aggressive emission cuts result in northward shifts of the tropical rainbands whose signal can emerge from expected internal variability on short, 10–20-yr time horizons. We also show for the first time that this northward shift also impacts East Africa, with evidence of delays to both onset and withdrawal of the short rains. However, comparisons of rainfall impacts across models suggest that only certain aspects of both the West and East African model responses may be robust, given model uncertainties. This work motivates the need for wider exploration of air quality scenarios in the climate science community to assess the robustness of these projected changes and to provide evidence to underpin climate adaptation in Africa. In particular, revised estimates of emission impacts of legislated measures every 5–10 years would have a value in providing near-term climate adaptation information for African stakeholders.

Open access
Pedro A. Jiménez, Jordi Vilà-Guerau de Arellano, J. Fidel González-Rouco, Jorge Navarro, Juan P. Montávez, Elena García-Bustamante, and Jimy Dudhia

Abstract

Variations in the diurnal wind pattern associated with heat waves and drought conditions are investigated climatologically at a regional level (northeast of the Iberian Peninsula). The study, based on high-density observational evidence and fine spatial-scale mesoscale modeling for the 1992–2004 period, shows that wind speed can decrease up to 22% under situations characterized by extremely high temperatures and severe drought, such as the European summer of 2003. By examining the role of the different atmospheric scales of motion that determine the wind diurnal variability, it is found that the 2003 synoptic conditions are the main driver for changes in the wind speed field. In turn, these changes are modulated by mesoscale circulations influenced by the soil moisture availability. The results have implications for broad regional modeling studies of current climate and climate change simulations in as much as the study demonstrates that a correct representation of local soil moisture conditions impacts atmospheric circulation and therefore the regional climate state.

Full access