Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Jeffrey Anderson x
  • CCSM4/CESM1 x
  • All content x
Clear All Modify Search
Alicia R. Karspeck, Steve Yeager, Gokhan Danabasoglu, Tim Hoar, Nancy Collins, Kevin Raeder, Jeffrey Anderson, and Joseph Tribbia

Abstract

The authors report on the implementation and evaluation of a 48-member ensemble adjustment Kalman filter (EAKF) for the ocean component of the Community Climate System Model, version 4 (CCSM4). The ocean assimilation system described was developed to support the eventual generation of historical ocean-state estimates and ocean-initialized climate predictions with the CCSM4 and its next generation, the Community Earth System Model (CESM). In this initial configuration of the system, daily subsurface temperature and salinity data from the 2009 World Ocean Database are assimilated into the ocean model from 1 January 1998 to 31 December 2005. Each ensemble member of the ocean is forced by a member of an independently generated CCSM4 atmospheric EAKF analysis, making this a loosely coupled framework. Over most of the globe, the time-mean temperature and salinity fields are improved relative to an identically forced ocean model simulation without assimilation. This improvement is especially notable in strong frontal regions such as the western and eastern boundary currents. The assimilation system is most effective in the upper 1000 m of the ocean, where the vast majority of in situ observations are located. Because of the shortness of this experiment, ocean variability is not discussed. Challenges that arise from using an ocean model with strong regional biases, coarse resolution, and low internal variability to assimilate real observations are discussed, and areas of ongoing improvement for the assimilation system are outlined.

Full access
Kevin Raeder, Jeffrey L. Anderson, Nancy Collins, Timothy J. Hoar, Jennifer E. Kay, Peter H. Lauritzen, and Robert Pincus

Abstract

The Community Atmosphere Model (CAM) has been interfaced to the Data Assimilation Research Testbed (DART), a community facility for ensemble data assimilation. This provides a large set of data assimilation tools for climate model research and development. Aspects of the interface to the Community Earth System Model (CESM) software are discussed and a variety of applications are illustrated, ranging from model development to the production of long series of analyses. CAM output is compared directly to real observations from platforms ranging from radiosondes to global positioning system satellites. Such comparisons use the temporally and spatially heterogeneous analysis error estimates available from the ensemble to provide very specific forecast quality evaluations. The ability to start forecasts from analyses, which were generated by CAM on its native grid and have no foreign model bias, contributed to the detection of a code error involving Arctic sea ice and cloud cover. The potential of parameter estimation is discussed. A CAM ensemble reanalysis has been generated for more than 15 yr. Atmospheric forcings from the reanalysis were required as input to generate an ocean ensemble reanalysis that provided initial conditions for decadal prediction experiments. The software enables rapid experimentation with differing sets of observations and state variables, and the comparison of different models against identical real observations, as illustrated by a comparison of forecasts initialized by interpolated ECMWF analyses and by DART/CAM analyses.

Full access