Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Jiayu Zheng x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
Jia-Lin Lin, Toshiaki Shinoda, Brant Liebmann, Taotao Qian, Weiqing Han, Paul Roundy, Jiayu Zhou, and Yangxing Zheng

Abstract

This study evaluates the intraseasonal variability associated with summer precipitation over South America in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of each model’s twentieth-century climate simulation are analyzed. Two dominant intraseasonal bands associated with summer precipitation over South America are focused on: the 40- and the 22-day band. The results show that in the southern summer (November–April), most of the models underestimate seasonal mean precipitation over central-east Brazil, northeast Brazil, and the South Atlantic convergence zone (SACZ), while the Atlantic intertropical convergence zone (ITCZ) is shifted southward of its observed position. Most of the models capture both the 40- and 22-day band around Uruguay, but with less frequent active episodes than observed. The models also tend to underestimate the total intraseasonal (10–90 day), the 40-, and the 22-day band variances. For the 40-day band, 10 of the 14 models simulate to some extent the 3-cell pattern around South America, and 6 models reproduce its teleconnection with precipitation in the south-central Pacific, but only 1 model simulates the teleconnection with the MJO in the equatorial Pacific, and only 3 models capture its northward propagation from 50° to 32°S. For the 7 models with three-dimensional data available, only 1 model reproduces well the deep baroclinic vertical structure of the 40-day band. For the 22-day band, only 6 of the 14 models capture its northward propagation from the SACZ to the Atlantic ITCZ. It is found that models with some form of moisture convective trigger tend to produce large variances for the intraseasonal bands.

Full access