Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Jimy Dudhia x
  • Journal of Applied Meteorology and Climatology x
  • All content x
Clear All Modify Search
Pedro A. Jiménez and Jimy Dudhia

Abstract

The Weather Research and Forecasting (WRF) model presents a high surface wind speed bias over plains and valleys that constitutes a limitation for the increasing use of the model for several applications. This study attempts to correct for this bias by parameterizing the effects that the unresolved topographic features exert over the momentum flux. The proposed parameterization is based on the concept of a momentum sink term and makes use of the standard deviation of the subgrid-scale orography as well as the Laplacian of the topographic field. Both the drag generated by the unresolved terrain and the possibility of an increase in the speed of the flow over the mountains and hills, where it is herein shown that WRF presents a low wind speed bias, are considered in the scheme. The surface wind simulation over a complex-terrain region that is located in the northeast of the Iberian Peninsula is improved with the inclusion of the new parameterization. In particular, the underestimation of the wind speed spatial variability resulting from the mentioned biases is corrected. The importance of selecting appropriate grid points to compare with observations is also examined. The wind speed from the nearest grid point is not always the most appropriate one for this comparison, nearby ones being more representative. The new scheme not only improves the climatological winds but also the intradiurnal variations at the mountains, over which the default WRF shows limitations in reproducing the observed wind behavior. Some advantages of the proposed formulation for wind-resource evaluation are also discussed.

Full access
Pedro A. Jiménez and Jimy Dudhia

Abstract

The wind stress formulation in an atmospheric model over shallow waters is investigated using year-long observations of the wind profile within the first 100 m of the atmosphere and mesoscale simulations. The model experiments use a range of planetary boundary layer parameterizations to quantify the uncertainty related to the turbulent closure assumptions and thus to isolate the dominant influence of the surface roughness formulation. Results indicate that a positive wind speed bias exists when common open-ocean formulations for roughness are adopted for a region with a water depth of 30 m. Imposition of a wind stress formulation that is consistent with previous shallow-water estimates is necessary to reconcile model wind speeds with observations, providing modeling evidence that supports the increase of surface drag over shallow waters. The possibility of including water depth in the parameterization of roughness length is examined.

Full access
Pedro A. Jiménez and Jimy Dudhia

Abstract

The ability of the Weather Research and Forecasting (WRF) model to reproduce the surface wind direction over complex terrain is examined. A simulation spanning a winter season at a high horizontal resolution of 2 km is compared with wind direction records from a surface observational network located in the northeastern Iberian Peninsula. A previous evaluation has shown the ability of WRF to reproduce the wind speed over the region once the effects of the subgrid-scale topography are parameterized. Hence, the current investigation complements the previous findings, providing information about the model's ability to reproduce the direction of the surface flow. The differences between the observations and the model are quantified in terms of scores explicitly designed to handle the circular nature of the wind direction. Results show that the differences depend on the wind speed. The larger the wind speed is, the smaller are the wind direction differences. Areas with more complex terrain show larger systematic differences between model and observations; in these areas, a statistical correction is shown to help. The importance of the grid point selected for the comparison with observations is also analyzed. A careful selection is relevant to reducing comparative problems over complex terrain.

Full access
Ram P. Regmi, Toshihiro Kitada, Jimy Dudhia, and Sangeeta Maharjan

Abstract

Nepal has been the location of a series of fatal aircraft accidents, raising serious concerns about civil aviation security and the safety of passengers. However, significant studies on weather patterns associated with the airports and air routes of the Himalayan complex terrain and their implications for aviation activities are yet to be carried out. The present study numerically reconstructs the prevailing weather conditions and puts forward some possible causes behind the most recent fatal aircraft accident in the foothills of the western Nepal Himalaya at 0730 UTC (1315 LST) 16 February 2014. The weather patterns have been numerically simulated at 1-km2 horizontal grid resolution using the Weather Research and Forecasting (WRF) modeling system. The reconstructed weather situation shows the existence of a low-level cloud ceiling, supercooled cloud water and hail, trapped mountain waves, supercritical descent of a strong tail wind, and the development of turbulence at the altitude of the flight path followed by the aircraft. The aircraft might have gone through a series of weather hazards including visibility obstruction, moderate turbulence, abnormal loss in altitude, and icing. It is concluded that the weather situation over the region was adverse enough to affect small aircraft and therefore that it might have played an important role leading to the fatal accident. The development of hazardous weather over the region may be attributed to a previously unanticipated large-scale easterly gravity current over the middle hills of the Nepal Himalaya. The gravity current originated from the central high Himalayan mountainous region located northeast of the Kathmandu valley and traveled more than 200 km, reaching the foothills of the western Nepal Himalaya.

Full access
Edward G. Patton, Peter P. Sullivan, Branko Kosović, Jimy Dudhia, Larry Mahrt, Mark Žagar, and Tomislav Marić

Abstract

A combination of turbulence-resolving large-eddy simulations and observations are used to examine the influence of swell amplitude and swell propagation angle on surface drag. Based on the analysis a new surface roughness parameterization with nonequilibrium wave effects is proposed. The surface roughness accounts for swell amplitude and wavelength and its relative motion with respect to the mean wind direction. The proposed parameterization is tested in uncoupled three-dimensional Weather and Research Forecasting (WRF) simulations at grid sizes near 1 km where we explore potential implications of our modifications for two-way coupled atmosphere–wave models. Wind–wave misalignment likely explains the large scatter in observed nondimensional surface roughness under swell-dominated conditions. Andreas et al.’s relationship between friction velocity and the 10-m wind speed under predicts the increased drag produced by misaligned winds and waves. Incorporating wave-state (speed and direction) influences in parameterizations improves predictive skill. In a broad sense, these results suggest that one needs information on winds and wave state to upscale buoy measurements.

Open access
Song-You Hong, Kyo-Sun Sunny Lim, Ju-Hye Kim, Jeong-Ock Jade Lim, and Jimy Dudhia

Abstract

This study examines the relative importance of ice-phase microphysics and sedimentation velocity for hydrometeors in bulk microphysics schemes. The two bulk microphysics schemes having the same number of prognostic water substances, the Weather Research and Forecasting (WRF) Single-Moment 6-Class Microphysics Scheme (WSM6) and the Purdue–Lin scheme (PLIN), are evaluated for a 2D idealized storm case and for a 3D heavy rainfall event over Korea. The relative importance of microphysics and sedimentation velocity for ice particles is illuminated by the additional experiments that exchange the sedimentation velocity formula for graupel in the two schemes. In a 2D idealized storm simulation test bed, it is found that, relative to the PLIN scheme, the WSM6 scheme develops the storm late with weakened intensity because of a slower sedimentation velocity for graupel. Such a weakened intensity of precipitation also appears in a 3D model framework when the WSM6 scheme is used, in conjunction with the overall distribution of the precipitation band southward toward what was observed. The major reason is found to be the ice-phase microphysics of the WSM6 and related ice-cloud–radiation feedback, rather than the smaller terminal velocity for graupel in the WSM6 than in the PLIN scheme.

Full access
Pedro A. Jiménez, J. Fidel González-Rouco, Elena García-Bustamante, Jorge Navarro, Juan P. Montávez, Jordi Vilà-Guerau de Arellano, Jimy Dudhia, and Antonio Muñoz-Roldan

Abstract

This study analyzes the daily-mean surface wind variability over an area characterized by complex topography through comparing observations and a 2-km-spatial-resolution simulation performed with the Weather Research and Forecasting (WRF) model for the period 1992–2005. The evaluation focuses on the performance of the simulation to reproduce the wind variability within subregions identified from observations over the 1999–2002 period in a previous study. By comparing with wind observations, the model results show the ability of the WRF dynamical downscaling over a region of complex terrain. The higher spatiotemporal resolution of the WRF simulation is used to evaluate the extent to which the length of the observational period and the limited spatial coverage of observations condition one’s understanding of the wind variability over the area. The subregions identified with the simulation during the 1992–2005 period are similar to those identified with observations (1999–2002). In addition, the reduced number of stations reasonably represents the spatial wind variability over the area. However, the analysis of the full spatial dimension simulated by the model suggests that observational coverage could be improved in some subregions. The approach adopted here can have a direct application to the design of observational networks.

Full access