Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Jimy Dudhia x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Song-You Hong and Jimy Dudhia

No abstract available.

Full access
Pedro A. Jimenez, Joshua P. Hacker, Jimy Dudhia, Sue Ellen Haupt, Jose A. Ruiz-Arias, Chris A. Gueymard, Gregory Thompson, Trude Eidhammer, and Aijun Deng

Abstract

WRF-Solar is a specific configuration and augmentation of the Weather Research and Forecasting (WRF) Model designed for solar energy applications. Recent upgrades to the WRF Model contribute to making the model appropriate for solar power forecasting and comprise 1) developments to diagnose internally relevant atmospheric parameters required by the solar industry, 2) improved representation of aerosol–radiation feedback, 3) incorporation of cloud–aerosol interactions, and 4) improved cloud–radiation feedback. The WRF-Solar developments are presented together with a comprehensive characterization of the model performance for forecasting during clear skies. Performance is evaluated with numerical experiments using a range of different external and internal treatment of the atmospheric aerosols, including both a model-derived climatology of aerosol optical depth and temporally evolving aerosol optical properties from reanalysis products. The necessity of incorporating the influence of atmospheric aerosols to obtain accurate estimations of the surface shortwave irradiance components in clear-sky conditions is evident. Improvements of up to 58%, 76%, and 83% are found in global horizontal irradiance, direct normal irradiance, and diffuse irradiance, respectively, compared to a standard version of the WRF Model. Results demonstrate that the WRF-Solar model is an improved numerical tool for research and applications in support of solar energy.

Full access
Sharanya J. Majumdar, Juanzhen Sun, Brian Golding, Paul Joe, Jimy Dudhia, Olivier Caumont, Krushna Chandra Gouda, Peter Steinle, Béatrice Vincendon, Jianjie Wang, and Nusrat Yussouf

Abstract

Improving the forecasting and communication of weather hazards such as urban floods and extreme winds has been recognized by the World Meteorological Organization (WMO) as a priority for international weather research. The WMO has established a 10-yr High-Impact Weather Project (HIWeather) to address global challenges and accelerate progress on scientific and social solutions. In this review, key challenges in hazard forecasting are first illustrated and summarized via four examples of high-impact weather events. Following this, a synthesis of the requirements, current status, and future research in observations, multiscale data assimilation, multiscale ensemble forecasting, and multiscale coupled hazard modeling is provided.

Full access
Xin-Zhong Liang, Min Xu, Xing Yuan, Tiejun Ling, Hyun I. Choi, Feng Zhang, Ligang Chen, Shuyan Liu, Shenjian Su, Fengxue Qiao, Yuxiang He, Julian X. L. Wang, Kenneth E. Kunkel, Wei Gao, Everette Joseph, Vernon Morris, Tsann-Wang Yu, Jimy Dudhia, and John Michalakes

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model.

This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.

Full access
Jordan G. Powers, Joseph B. Klemp, William C. Skamarock, Christopher A. Davis, Jimy Dudhia, David O. Gill, Janice L. Coen, David J. Gochis, Ravan Ahmadov, Steven E. Peckham, Georg A. Grell, John Michalakes, Samuel Trahan, Stanley G. Benjamin, Curtis R. Alexander, Geoffrey J. Dimego, Wei Wang, Craig S. Schwartz, Glen S. Romine, Zhiquan Liu, Chris Snyder, Fei Chen, Michael J. Barlage, Wei Yu, and Michael G. Duda

Abstract

Since its initial release in 2000, the Weather Research and Forecasting (WRF) Model has become one of the world’s most widely used numerical weather prediction models. Designed to serve both research and operational needs, it has grown to offer a spectrum of options and capabilities for a wide range of applications. In addition, it underlies a number of tailored systems that address Earth system modeling beyond weather. While the WRF Model has a centralized support effort, it has become a truly community model, driven by the developments and contributions of an active worldwide user base. The WRF Model sees significant use for operational forecasting, and its research implementations are pushing the boundaries of finescale atmospheric simulation. Future model directions include developments in physics, exploiting emerging compute technologies, and ever-innovative applications. From its contributions to research, forecasting, educational, and commercial efforts worldwide, the WRF Model has made a significant mark on numerical weather prediction and atmospheric science.

Full access