Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Jiwen Fan x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
Xiang Ni, Andreas Muehlbauer, John T. Allen, Qinghong Zhang, and Jiwen Fan

Abstract

Hail size records are analyzed at 2254 stations in China and a hail size climatology is developed based on gridded hail observations for the period 1960–2015. It is found that the annual percentiles of hail size records changed sharply and national-wide after 1980, therefore two periods, 1960–79 and 1980–2015, are studied. There are some similarities between the two periods in terms of the characteristics of hail size such as the spatial distribution patterns of mean annual maximum hail size and occurrence week of annual maximum hail size. The 1980–2015 period had higher observation density than the 1960–79 period, but showed smaller mean annual maximum hail size, especially in northern China. In the majority of grid boxes, the annual maximum hail size experienced a decreasing trend during the 1980–2015 period. A Gumbel extreme value model is fitted to each grid box to estimate the return periods of maximum hail size. The scale and location parameter of the fitted Gumbel distributions are higher in eastern China than in western China, thereby reflecting a greater likelihood of large hail in eastern China. In southern China, the maximum hail size exceeds 127 mm for a 10-yr return period, whereas in northern China maximum hail size exceeds this threshold for a 50-yr return period. The Gumbel model is found to potentially underestimate the maximum hail size for certain return periods, but provides a more informed picture of the spatial distribution of extreme hail size and the regional differences.

Free access
Paul J. Neiman, Natalie Gaggini, Christopher W. Fairall, Joshua Aikins, J. Ryan Spackman, L. Ruby Leung, Jiwen Fan, Joseph Hardin, Nicholas R. Nalli, and Allen B. White

Abstract

To gain a more complete observational understanding of atmospheric rivers (ARs) over the data-sparse open ocean, a diverse suite of mobile observing platforms deployed on NOAA’s R/V Ronald H. Brown (RHB) and G-IV research aircraft during the CalWater-2015 field campaign was used to describe the structure and evolution of a long-lived AR modulated by six frontal waves over the northeastern Pacific during 20–25 January 2015. Satellite observations and reanalysis diagnostics provided synoptic-scale context, illustrating the warm, moist southwesterly airstream within the quasi-stationary AR situated between an upper-level trough and ridge. The AR remained offshore of the U.S. West Coast but made landfall across British Columbia where heavy precipitation fell. A total of 47 rawinsondes launched from the RHB provided a comprehensive thermodynamic and kinematic depiction of the AR, including uniquely documenting an upward intrusion of strong water vapor transport in the low-level moist southwesterly flow during the passage of frontal waves 2–6. A collocated 1290-MHz wind profiler showed an abrupt frontal transition from southwesterly to northerly flow below 1 km MSL coinciding with the tail end of AR conditions. Shipborne radar and disdrometer observations in the AR uniquely captured key microphysical characteristics of shallow warm rain, convection, and deep mixed-phase precipitation. Novel observations of sea surface fluxes in a midlatitude AR documented persistent ocean surface evaporation and sensible heat transfer into the ocean. The G-IV aircraft flew directly over the ship, with dropsonde and radar spatial analyses complementing the temporal depictions of the AR from the RHB. The AR characteristics varied, depending on the location of the cross section relative to the frontal waves.

Full access
Lulin Xue, Jiwen Fan, Zachary J. Lebo, Wei Wu, Hugh Morrison, Wojciech W. Grabowski, Xia Chu, István Geresdi, Kirk North, Ronald Stenz, Yang Gao, Xiaofeng Lou, Aaron Bansemer, Andrew J. Heymsfield, Greg M. McFarquhar, and Roy M. Rasmussen

Abstract

The squall-line event on 20 May 2011, during the Midlatitude Continental Convective Clouds (MC3E) field campaign has been simulated by three bin (spectral) microphysics schemes coupled into the Weather Research and Forecasting (WRF) Model. Semi-idealized three-dimensional simulations driven by temperature and moisture profiles acquired by a radiosonde released in the preconvection environment at 1200 UTC in Morris, Oklahoma, show that each scheme produced a squall line with features broadly consistent with the observed storm characteristics. However, substantial differences in the details of the simulated dynamic and thermodynamic structure are evident. These differences are attributed to different algorithms and numerical representations of microphysical processes, assumptions of the hydrometeor processes and properties, especially ice particle mass, density, and terminal velocity relationships with size, and the resulting interactions between the microphysics, cold pool, and dynamics. This study shows that different bin microphysics schemes, designed to be conceptually more realistic and thus arguably more accurate than bulk microphysics schemes, still simulate a wide spread of microphysical, thermodynamic, and dynamic characteristics of a squall line, qualitatively similar to the spread of squall-line characteristics using various bulk schemes. Future work may focus on improving the representation of ice particle properties in bin schemes to reduce this uncertainty and using the similar assumptions for all schemes to isolate the impact of physics from numerics.

Full access