Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Joseph P. Zagrodnik x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Clifford F. Mass, Robert Conrick, Nicholas Weber, and Joseph P. Zagrodnik


On 27 January 2018, a highly localized, strong wind event occurred along the north shore of Lake Quinault, Washington. The resulting loss of large old-growth trees in a roughly 0.5-km2 region led to blocked roads and power outages. Nearby surface stations did not record anomalous winds, and no tree damage was reported in the surrounding region. Based on public accounts and a nearby seismometer, it appears that the strong winds lasted less than 10 min. Surface and aerial damage surveys showed that the trees fell from a different direction (northerly) than the synoptic or mesoscale f low (southwesterly to southeasterly). Based on high-resolution Weather Research and Forecasting (WRF) Model simulations, it appears that the damaging northerly winds were the result of a strong atmospheric rotor produced by a high-amplitude mountain wave. A simulation with 148-m grid spacing produced a rotor at the same time and location as the treefalls. Synoptic analysis and the high-resolution simulation showed that moderately strong southeasterly flow and a stable layer associated with the approaching occluded front interacted with a ∼750-m-high upstream mountain ridge to produce the mountain wave and associated rotor circulation. The combination of an inversion and strong shear at and above the upstream ridge were outliers in a climatology of soundings from the nearby Quillayute rawinsonde site, suggesting that such intense mountain-wave rotors are unusual in this valley.

Open access
Robert A. Houze Jr., Lynn A. McMurdie, Walter A. Petersen, Mathew R. Schwaller, William Baccus, Jessica D. Lundquist, Clifford F. Mass, Bart Nijssen, Steven A. Rutledge, David R. Hudak, Simone Tanelli, Gerald G. Mace, Michael R. Poellot, Dennis P. Lettenmaier, Joseph P. Zagrodnik, Angela K. Rowe, Jennifer C. DeHart, Luke E. Madaus, Hannah C. Barnes, and V. Chandrasekar


The Olympic Mountains Experiment (OLYMPEX) took place during the 2015/16 fall–winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S.–Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching “atmospheric river” status, warm- and cold-frontal systems, and postfrontal convection.

Open access