Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Julie Pullen x
  • Journal of Applied Meteorology and Climatology x
  • All content x
Clear All Modify Search
Julie Pullen, Teddy Holt, Alan F. Blumberg, and Robert D. Bornstein

Abstract

Multiply nested urbanized mesoscale model [Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)] simulations of the New York–New Jersey metropolitan region are conducted for 4–11 July 2004. The simulations differ only in their specification of sea surface temperatures (SSTs) on nest 4 (1.33-km resolution) and nest 5 (0.44-km resolution). The “control SST” simulation (CONTROL-SST) uses an analyzed SST product, whereas the “New York Harbor Observing and Prediction System (NYHOPS) SST” simulation (NYHOPS-SST) uses hourly SSTs from the NYHOPS model hindcast. Upwelling-favorable (southerly) winds preceding the simulation time period and continuing for much of the first 5 days of the simulation generate cold water adjacent to the New Jersey coast and a cold eddy immediately outside of the harbor in the New York Bight. Both features are prominent in NYHOPS-SST but are not pronounced in CONTROL-SST. The upwelled water has a discernible influence on the overlying atmosphere by cooling near-surface air temperatures by approximately 1°–2°C, slowing the near-surface winds by 15%–20%, and reducing the nocturnal urban heat island effect by up to 1.3°C. At two coastal land-based sites and one overwater station, the wind speed mean bias is systematically reduced in NYHOPS-SST. During a wind shift to northwesterly on day 6 (9 July 2004) the comparatively cooler NYHOPS-SSTs impact the atmosphere over an even broader offshore area than was affected in the mean during the previous 5 days. Hence, air temperature evolution measured at the overwater site is better reproduced in NYHOPS-SST. Interaction of the offshore flow with the cool SSTs in NYHOPS-SST induces internal boundary layer (IBL) formation, sustained and deepened by turbulent kinetic energy advected from adjacent land areas; IBL formation did not occur in CONTROL-SST.

Full access
Talmor Meir, Julie Pullen, Alan F. Blumberg, Teddy R. Holt, Paul E. Bieringer, and George Bieberbach Jr.

Abstract

Results are presented from a tracer-release modeling study designed to examine atmospheric transport and dispersion (“T&D”) behavior surrounding the complex coastal–urban region of New York City, New York, where air–sea interaction and urban influences are prominent. The puff-based Hazard Prediction Assessment Capability (HPAC, version 5) model is run for idealized conditions, and it is also linked with the urbanized COAMPS (1 km) meteorological model and the NAM (12 km) meteorological model. Results are compared with “control” plumes utilizing surface meteorological input from 22 weather stations. In all configurations, nighttime conditions result in plume predictions that are more sensitive to small changes in wind direction. Plume overlap is reduced by up to 70% when plumes are transported during the night. An analysis of vertical plume cross sections and the nature of the underlying transport and the dispersion equations both suggest that heat flux gradients and boundary layer height gradients determine vertical transport of pollutants across land–sea boundaries in the T&D model. As a consequence, in both idealized and realistic meteorological configurations, waterfront releases generate greater plume discrepancies relative to plumes transported over land/urban surfaces. For transport over water (northwest winds), the higher-fidelity meteorological model (COAMPS) generated plumes with overlap reduced by about one-half when compared with that of the coarser-resolution NAM model (13% vs 24% during the daytime and 11% vs 18% during the nighttime). This study highlights the need for more sophisticated treatment of land–sea transition zones in T&D calculations covering waterside releases.

Full access