Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Julie Pullen x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
Teddy Holt and Julie Pullen

Abstract

High-resolution numerical simulations are conducted using the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) with two different urban canopy parameterizations for a 23-day period in August 2005 for the New York City (NYC) metropolitan area. The control COAMPS simulations use the single-layer Weather Research and Forecasting (WRF) Urban Canopy Model (W-UCM) and sensitivity simulations use a multilayer urban parameterization based on Brown and Williams (BW-UCM). Both simulations use surface forcing from the WRF land surface model, Noah, and hourly sea surface temperature fields from the New York Harbor and Ocean Prediction System model hindcast. Mean statistics are computed for the 23-day period from 5 to 27 August (540-hourly observations) at five Meteorological Aviation Report stations for a nested 0.444-km horizontal resolution grid centered over the NYC metropolitan area. Both simulations show a cold mean urban canopy air temperature bias primarily due to an underestimation of nighttime temperatures. The mean bias is significantly reduced using the W-UCM (−0.10°C for W-UCM versus −0.82°C for BW-UCM) due to the development of a stronger nocturnal urban heat island (UHI; mean value of 2.2°C for the W-UCM versus 1.9°C for the BW-UCM). Results from a 24-h case study (12 August 2005) indicate that the W-UCM parameterization better maintains the UHI through increased nocturnal warming due to wall and road effects. The ground heat flux for the W-UCM is much larger during the daytime than for the BW-UCM (peak ∼300 versus 100 W m−2), effectively shifting the period of positive sensible flux later into the early evening. This helps to maintain the near-surface mixed layer at night in the W-UCM simulation and sustains the nocturnal UHI. In contrast, the BW-UCM simulation develops a strong nocturnal stable surface layer extending to approximately 50–75-m depth. Subsequently, the nocturnal BW-UCM wind speeds are a factor of 3–4 less than W-UCM with reduced nighttime turbulent kinetic energy (average < 0.1 m2 s−2). For the densely urbanized area of Manhattan, BW-UCM winds show more dependence on urbanization than W-UCM. The decrease in urban wind speed is most prominent for BW-UCM both in the day- and nighttime over lower Manhattan, with the daytime decrease generally over the region of tallest building heights while the nighttime decrease is influenced by both building height as well as urban fraction. In contrast, the W-UCM winds show less horizontal variation over Manhattan, particularly during the daytime. These results stress the importance of properly characterizing the urban morphology in urban parameterizations at high resolutions to improve the model’s predictive capability.

Full access
Julie Pullen, James D. Doyle, and Richard P. Signell

Abstract

High-resolution numerical simulations of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) were conducted to examine the impact of the coupling strategy (one versus two way) on the ocean and atmosphere model skill, and to elucidate dynamical aspects of the coupled response. Simulations for 23 September–23 October 2002 utilized 2- and 4-km resolution grids for the ocean and atmosphere, respectively. During a strong wind and sea surface cooling event, cold water fringed the west and north coasts in the two-way coupled simulation (where the atmosphere interacted with SST generated by the ocean model) and attenuated by approximately 20% of the cross-basin extension of bora-driven upward heat fluxes relative to the one-way coupled simulation (where the atmosphere model was not influenced by the ocean model). An assessment of model results using remotely sensed and in situ measurements of ocean temperature along with overwater and coastal wind observations showed enhanced skill in the two-way coupled model. In particular, the two-way coupled model produced spatially complex SSTs after the cooling event that compared more favorably (using mean bias and rms error) with satellite multichannel SST (MCSST) and had a stabilizing effect on the atmosphere. As a consequence, mean mixing was suppressed by over 20% in the atmospheric boundary layer and more realistic mean 10-m wind speeds were produced during the monthlong two-way coupled simulation.

Full access