Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Julien Delanoë x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Anna E. Luebke, Julien Delanoë, Vincent Noel, Hélène Chepfer, and Bjorn Stevens
Open access
Shuyi S. Chen, Brandon W. Kerns, Nick Guy, David P. Jorgensen, Julien Delanoë, Nicolas Viltard, Christopher J. Zappa, Falko Judt, Chia-Ying Lee, and Ajda Savarin

Abstract

One of the most challenging problems in predicting the Madden–Julian oscillation (MJO) is the initiation of large-scale convective activity associated with the MJO over the tropical Indian Ocean. The lack of observations is a major obstacle. The Dynamics of the MJO (DYNAMO) field campaign collected unprecedented observations from air-, land-, and ship-based platforms from October 2011 to February 2012. Here we provide an overview of the aircraft observations in DYNAMO, which captured an MJO initiation event from November to December 2011. The National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft was stationed at Diego Garcia and the French Falcon 20 aircraft on Gan Island in the Maldives. Observations from the two aircraft provide a unique dataset of three-dimensional structure of convective cloud systems and their environment from the flight level, airborne Doppler radar, microphysics probes, ocean surface imaging, global positioning system (GPS) dropsonde, and airborne expendable bathythermograph (AXBT) data. The aircraft observations revealed interactions among dry air, the intertropical convergence zone (ITCZ), convective cloud systems, and air–sea interaction induced by convective cold pools, which may play important roles in the multiscale processes of MJO initiation. This overview focuses on some key aspects of the aircraft observations that contribute directly to better understanding of the interactions among convective cloud systems, environmental moisture, and the upper ocean during the MJO initiation over the tropical Indian Ocean. Special emphasis is on the distinct characteristics of convective cloud systems, environmental moisture and winds, air–sea fluxes, and convective cold pools during the convectively suppressed, transition/onset, and active phases of the MJO.

Full access
Julie Haggerty, Eric Defer, Adrianus De Laat, Kristopher Bedka, Jean-Marc Moisselin, Rodney Potts, Julien Delanoë, Frédéric Parol, Alice Grandin, and Stephanie Divito

Abstract

In the past two decades, more than 150 jet engine power-loss and damage events have been attributed to a phenomenon known as ice crystal icing (ICI). Ingestion of large numbers of ice particles into the engine core are thought to be responsible for these events, which typically occur at high altitudes near large convective systems in tropical air masses. In recent years, scientists, engineers, aviation regulators, and airlines from around the world have collaborated to better understand the relevant meteorological processes associated with ICI events, solve critical engineering problems, develop new certification standards, and devise mitigation strategies for the aviation industry. One area of research is the development of nowcasting techniques based on available remote sensing technology and numerical weather prediction (NWP) models to identify areas of high ice water content (IWC) and enable the provision of alerts to the aviation industry. Multiple techniques have been developed using geostationary and polar-orbiting satellite products, NWP model fields, and ground-based radar data as the basis for high-IWC products. Targeted field experiments in tropical regions with high incidence of ICI events have provided data for product validation and refinement of these methods. Beginning in 2015, research teams have assembled at a series of annual workshops to exchange ideas and standardize methods for evaluating performance of high-IWC detection products. This paper provides an overview of the approaches used and the current skill for identifying high-IWC conditions. Recommendations for future work in this area are also presented.

Open access
Bjorn Stevens, Felix Ament, Sandrine Bony, Susanne Crewell, Florian Ewald, Silke Gross, Akio Hansen, Lutz Hirsch, Marek Jacob, Tobias Kölling, Heike Konow, Bernhard Mayer, Manfred Wendisch, Martin Wirth, Kevin Wolf, Stephan Bakan, Matthias Bauer-Pfundstein, Matthias Brueck, Julien Delanoë, André Ehrlich, David Farrell, Marvin Forde, Felix Gödde, Hans Grob, Martin Hagen, Evelyn Jäkel, Friedhelm Jansen, Christian Klepp, Marcus Klingebiel, Mario Mech, Gerhard Peters, Markus Rapp, Allison A. Wing, and Tobias Zinner

Abstract

A configuration of the High-Altitude Long-Range Research Aircraft (HALO) as a remote sensing cloud observatory is described, and its use is illustrated with results from the first and second Next-Generation Aircraft Remote Sensing for Validation (NARVAL) field studies. Measurements from the second NARVAL (NARVAL2) are used to highlight the ability of HALO, when configured in this fashion, to characterize not only the distribution of water condensate in the atmosphere, but also its impact on radiant energy transfer and the covarying large-scale meteorological conditions—including the large-scale velocity field and its vertical component. The NARVAL campaigns with HALO demonstrate the potential of airborne cloud observatories to address long-standing riddles in studies of the coupling between clouds and circulation and are helping to motivate a new generation of field studies.

Open access
Véronique Ducrocq, Isabelle Braud, Silvio Davolio, Rossella Ferretti, Cyrille Flamant, Agustin Jansa, Norbert Kalthoff, Evelyne Richard, Isabelle Taupier-Letage, Pierre-Alain Ayral, Sophie Belamari, Alexis Berne, Marco Borga, Brice Boudevillain, Olivier Bock, Jean-Luc Boichard, Marie-Noëlle Bouin, Olivier Bousquet, Christophe Bouvier, Jacopo Chiggiato, Domenico Cimini, Ulrich Corsmeier, Laurent Coppola, Philippe Cocquerez, Eric Defer, Julien Delanoë, Paolo Di Girolamo, Alexis Doerenbecher, Philippe Drobinski, Yann Dufournet, Nadia Fourrié, Jonathan J. Gourley, Laurent Labatut, Dominique Lambert, Jérôme Le Coz, Frank S. Marzano, Gilles Molinié, Andrea Montani, Guillaume Nord, Mathieu Nuret, Karim Ramage, William Rison, Odile Roussot, Frédérique Said, Alfons Schwarzenboeck, Pierre Testor, Joël Van Baelen, Béatrice Vincendon, Montserrat Aran, and Jorge Tamayo

The Mediterranean region is frequently affected by heavy precipitation events associated with flash floods, landslides, and mudslides that cause hundreds of millions of euros in damages per year and, often, casualties. A major field campaign was devoted to heavy precipitation and f lash f loods from 5 September to 6 November 2012 within the framework of the 10-yr international Hydrological Cycle in the Mediterranean Experiment (HyMeX) dedicated to the hydrological cycle and related high-impact events. The 2-month field campaign took place over the northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The observation strategy of the field experiment was devised to improve knowledge of the following key components leading to heavy precipitation and flash flooding in the region: 1) the marine atmospheric f lows that transport moist and conditionally unstable air toward the coasts, 2) the Mediterranean Sea acting as a moisture and energy source, 3) the dynamics and microphysics of the convective systems producing heavy precipitation, and 4) the hydrological processes during flash floods. This article provides the rationale for developing this first HyMeX field experiment and an overview of its design and execution. Highlights of some intensive observation periods illustrate the potential of the unique datasets collected for process understanding, model improvement, and data assimilation.

Full access
Andreas Schäfler, George Craig, Heini Wernli, Philippe Arbogast, James D. Doyle, Ron McTaggart-Cowan, John Methven, Gwendal Rivière, Felix Ament, Maxi Boettcher, Martina Bramberger, Quitterie Cazenave, Richard Cotton, Susanne Crewell, Julien Delanoë, Andreas Dörnbrack, André Ehrlich, Florian Ewald, Andreas Fix, Christian M. Grams, Suzanne L. Gray, Hans Grob, Silke Groß, Martin Hagen, Ben Harvey, Lutz Hirsch, Marek Jacob, Tobias Kölling, Heike Konow, Christian Lemmerz, Oliver Lux, Linus Magnusson, Bernhard Mayer, Mario Mech, Richard Moore, Jacques Pelon, Julian Quinting, Stephan Rahm, Markus Rapp, Marc Rautenhaus, Oliver Reitebuch, Carolyn A. Reynolds, Harald Sodemann, Thomas Spengler, Geraint Vaughan, Manfred Wendisch, Martin Wirth, Benjamin Witschas, Kevin Wolf, and Tobias Zinner

Abstract

The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe.

Open access