Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Louis-Philippe Nadeau x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Malte F. Jansen, Louis-Philippe Nadeau, and Timothy M. Merlis

Abstract

Much of the existing theory for the ocean’s overturning circulation considers steady-state equilibrium solutions. However, Earth’s climate is not in a steady state, and a better understanding of the ocean’s nonequilibrium response to changes in the surface climate is urgently needed. Here, the time-dependent response of the deep-ocean overturning circulation to atmospheric warming is examined using a hierarchy of idealized ocean models. The transient response to surface warming is characterized by a shoaling and weakening of the Atlantic meridional overturning circulation (AMOC)—consistent with results from coupled climate simulations. The initial shoaling and weakening of the AMOC occurs on decadal time scales and is attributed to a rapid warming of northern-sourced deep water. The equilibrium response to warming, in contrast, is associated with a deepening and strengthening of the AMOC. The eventual deepening of the AMOC is argued to be associated with abyssal density changes and driven by modified surface fluxes in the Southern Ocean, following a reduction of the Antarctic sea ice cover. Full equilibration of the AMOC requires a diffusive adjustment of the abyss and takes many millennia. The equilibration time scale is much longer than most coupled climate model simulations, highlighting the importance of considering integration time and initial conditions when interpreting the deep-ocean circulation in climate models. The results also show that past climates are unlikely to be an adequate analog for changes in the overturning circulation during the coming decades or centuries.

Open access
Louis-Philippe Nadeau, Raffaele Ferrari, and Malte F. Jansen

Abstract

Changes in deep-ocean circulation and stratification have been argued to contribute to climatic shifts between glacial and interglacial climates by affecting the atmospheric carbon dioxide concentrations. It has been recently proposed that such changes are associated with variations in Antarctic sea ice through two possible mechanisms: an increased latitudinal extent of Antarctic sea ice and an increased rate of Antarctic sea ice formation. Both mechanisms lead to an upward shift of the Atlantic meridional overturning circulation (AMOC) above depths where diapycnal mixing is strong (above 2000 m), thus decoupling the AMOC from the abyssal overturning circulation. Here, these two hypotheses are tested using a series of idealized two-basin ocean simulations. To investigate independently the effect of an increased latitudinal ice extent from the effect of an increased ice formation rate, sea ice is parameterized as a latitude strip over which the buoyancy flux is negative. The results suggest that both mechanisms can effectively decouple the two cells of the meridional overturning circulation (MOC), and that their effects are additive. To illustrate the role of Antarctic sea ice in decoupling the AMOC and the abyssal overturning cell, the age of deep-water masses is estimated. An increase in both the sea ice extent and its formation rate yields a dramatic “aging” of deep-water masses if the sea ice is thick and acts as a lid, suppressing air–sea fluxes. The key role of vertical mixing is highlighted by comparing results using different profiles of vertical diffusivity. The implications of an increase in water mass ages for storing carbon in the deep ocean are discussed.

Full access