Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Lukas Papritz x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Lukas Papritz

Abstract

The thermodynamic processes and synoptic circulation features driving lower-tropospheric temperature extremes in the high Arctic (>80°N) are investigated. Based on 10-day kinematic backward trajectories from the 5% most intense potential temperature anomalies, the contributions of horizontal and vertical transport, subsidence-induced warming, and diabatic processes to the generation of the Arctic temperature anomaly are quantified. Cold extremes are mainly the result of sustained radiative cooling due to a sheltering of the Arctic from meridional airmass exchanges. This is linked to a strengthening of the tropospheric polar vortex, a reduced frequency of high-latitude blocking, and in winter also a southward shift of the North Atlantic storm track. The temperature anomaly of 60% of wintertime extremely warm air masses (90% in summer) is due to transport from a potentially warmer region. Subsidence from the Arctic midtroposphere in blocking anticyclones is the most important warming process with the largest contribution in summer (70% of extremely warm air masses). In both seasons, poleward transport of already warm air masses contributes around 20% and is favored by a poleward shift of the North Atlantic storm track. Finally, about 40% of the air masses in winter are of an Arctic origin and experience diabatic heating by surface heat fluxes in marine cold air outbreaks. Our study emphasizes the importance of processes in the Arctic and the relevance of anomalous blocking—in winter in the Barents, Kara, and Laptev Seas and in summer in the high Arctic—for the formation of warm extremes.

Free access
Franziska Aemisegger and Lukas Papritz

Abstract

This paper presents an object-based, global climatology (1979–2014) of strong large-scale ocean evaporation (SLOE) and its associated climatic properties. SLOE is diagnosed using an “atmospheric moisture uptake efficiency” criterion related to the ratio of surface evaporation and integrated water vapor content in the near-surface atmosphere. The chosen Eulerian identification procedure focuses on events that strongly contribute to the available near-surface atmospheric humidity. SLOE is particularly frequent along the warm ocean western boundary currents, downstream of large continental areas, and at the sea ice edge in polar regions with frequent cold-air outbreaks. Furthermore, wind-driven SLOE occurs in regions with topographically enforced winds. On a global annual average, SLOE occurs only 6% of the time but explains 22% of total ocean evaporation. An analysis of the past history and fate of air parcels involved in cold season SLOE in the North Atlantic and south Indian Oceans shows that cold-air advection is the main mechanism that induces these events. Extratropical cyclones thereby play an important role in setting the necessary equatorward synoptic flow. Consequently, the interannual variability of SLOE associated with the North Atlantic Oscillation and the southern annular mode reveals a very high sensitivity of SLOE with respect to the location of the storm tracks. This study highlights the strong link between transient synoptic events and the spatiotemporal variability in ocean evaporation patterns, which cannot be deduced from thermodynamic steady-state and climate mean state considerations alone.

Full access
Lukas Papritz and Thomas Spengler

Abstract

Understanding the climatological characteristics of marine cold air outbreaks (CAOs) is of critical importance to constrain the processes determining the heat flux forcing of the high-latitude oceans. In this study, a comprehensive multidecadal climatology of wintertime CAO air masses is presented for the Irminger Sea and Nordic seas. To investigate the origin, transport pathways, and thermodynamic evolution of CAO air masses, a novel methodology based on kinematic trajectories is introduced.

The major conclusions are as follows: (i) The most intense CAOs occur as a result of Arctic outflows following Greenland’s eastern coast from the Fram Strait southward and west of Novaya Zemlya. Weak CAOs also originate in flow across the SST gradient associated with the Arctic Front separating the Greenland and Iceland Seas from the Norwegian Sea. A substantial fraction of Irminger CAO air masses originate in the Canadian Arctic and overflow southern Greenland. (ii) CAOs account for 60%–80% of the wintertime oceanic heat loss associated with few intense CAOs west of Svalbard and in the Greenland, Iceland, and Barents Seas and frequent weak CAOs in the Norwegian and Irminger Seas. (iii) The amount of sensible heat extracted by CAO air masses is set by their intensity and their pathway over the underlying SST distribution, whereas the amount of latent heat is additionally capped by the SST. (iv) Among all CAO air masses, those in the Greenland and Iceland Seas extract the most sensible heat from the ocean and undergo the most intense diabatic warming. Irminger Sea CAO air masses experience only moderate diabatic warming but pick up more moisture than the other CAO air masses.

Full access
Lukas Papritz, Stephan Pfahl, Harald Sodemann, and Heini Wernli

Abstract

A climatology of cold air outbreaks (CAOs) in the high latitudes of the South Pacific and an analysis of the dynamical mechanisms leading to their formation are presented. Two major and distinct regions with frequent CAOs from autumn to spring are identified: one in the Ross Sea and another in the Amundsen and Bellingshausen Seas. Using an objective method to attribute CAOs to extratropical cyclones, it is shown that about 80% of the CAOs occur in association with the cyclonic flow induced by the passage of extratropical cyclones. Based on kinematic backward trajectories it is quantified that more than 40% of the air masses leading to CAOs originate from Antarctica and descend substantially, with the Ross Ice Shelf corridor as the major pathway. CAO trajectories descending from Antarctica differ from those originating over sea ice by a much lower specific humidity, stronger diabatic cooling, and much more intense adiabatic warming, while potential vorticity evolves similarly in both categories. In winter, CAOs are the major contributor to the net turbulent heat flux off the sea ice edge and CAO frequency strongly determines its interannual variation. Wintertime variations of the frequency of extratropical cyclones are strongly imprinted on the frequency of CAOs and the net turbulent heat and freshwater fluxes. In particular, much of the precipitation associated with the passage of extratropical cyclones is compensated by intense evaporation in cyclone-induced CAOs. This highlights the dominant role of the extratropical storm track in determining the variability of the buoyancy flux forcing of the Southern Ocean.

Full access
Lukas Papritz, Stephan Pfahl, Irina Rudeva, Ian Simmonds, Harald Sodemann, and Heini Wernli

Abstract

In this study, the important role of extratropical cyclones and fronts for the atmospheric freshwater flux over the Southern Ocean is analyzed. Based on the Interim ECMWF Re-Analysis (ERA-Interim), the freshwater flux associated with cyclones is quantified and it is revealed that the structure of the Southern Hemispheric storm track is strongly imprinted on the climatological freshwater flux. In particular, during austral winter the spiraliform shape of the storm track leads to a band of negative freshwater flux bending toward and around Antarctica, complemented by a strong freshwater input into the midlatitude Pacific, associated with the split storm track. The interannual variability of the wintertime high-latitude freshwater flux is shown to be largely determined by the variability of strong precipitation (>75th percentile). Using a novel and comprehensive method to attribute strong precipitation uniquely to cyclones and fronts, it is demonstrated that over the Southern Ocean between 60% and 90% of the strong precipitation events are due to these synoptic systems. Cyclones are the dominant cause of strong precipitation around Antarctica and in the midlatitudes of the Atlantic and the Pacific, while in the south Indian Ocean and the eastern Atlantic fronts bring most of the strong precipitation. A detailed analysis of the spatial variations of intense front and cyclone precipitation associated with the interannual variability of the wintertime frequency of cyclones in the midlatitude and high-latitude branches of the Pacific storm track underpins the importance of considering both fronts and cyclones in the analysis of the interannual variability of freshwater fluxes.

Full access