Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: M. Mauder x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
H.-T. Mengelkamp, F. Beyrich, G Heinemann, F Ament, J Bange, F Berger, J Bösenberg, T Foken, B Hennemuth, C. Heret, S Huneke, K.-P. Johnsen, M. Kerschgens, W. Kohsiek, J.-P. Leps, C. Liebethal, H. Lohse, M. Mauder, W. Meijninger, S. Raasch, C. Simmer, T. Spieß, A. Tittebrand, J. Uhlenbrock, and P. Zittel

The representation of subgrid-scale surface heterogeneities in numerical weather and climate models has been a challenging problem for more than a decade. The Evaporation at Grid and Pixel Scale (EVA-GRIPS) project adds to the numerous studies on vegetation-atmosphere interaction processes through a comprehensive field campaign and through simulation studies with land surface schemes and mesoscale models. The mixture of surface types in the test area in eastern Germany is typical for larger parts of northern Central Europe. The spatial scale considered corresponds to the grid scale of a regional atmospheric weather prediction or climate model and to the pixel scale of satellite images. Area-averaged fluxes derived from point measurements, scintillometer measurements, and a helicopter-borne turbulence probe were widely consistent with respect to the sensible heat flux. The latent heat flux from the scintillometer measurements is systematically higher than the eddy covariance data. Fluxes derived from numerical simulations proved the so-called mosaic approach to be an appropriate parameterization for subgrid heterogeneity.

Full access
B. Wolf, C. Chwala, B. Fersch, J. Garvelmann, W. Junkermann, M. J. Zeeman, A. Angerer, B. Adler, C. Beck, C. Brosy, P. Brugger, S. Emeis, M. Dannenmann, F. De Roo, E. Diaz-Pines, E. Haas, M. Hagen, I. Hajnsek, J. Jacobeit, T. Jagdhuber, N. Kalthoff, R. Kiese, H. Kunstmann, O. Kosak, R. Krieg, C. Malchow, M. Mauder, R. Merz, C. Notarnicola, A. Philipp, W. Reif, S. Reineke, T. Rödiger, N. Ruehr, K. Schäfer, M. Schrön, A. Senatore, H. Shupe, I. Völksch, C. Wanninger, S. Zacharias, and H. P. Schmid

Abstract

ScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and techniques to measure quantities that cannot (yet) be automated or deployed over long time periods. ScaleX is distinctive in its design, which combines the benefits of a long-term environmental-monitoring approach (TERENO) with the versatility and innovative power of a series of intensive campaigns, to bridge across a wide span of spatial and temporal scales. This contribution presents the concept and first data products of ScaleX-2015, which occurred in June–July 2015. The second installment of ScaleX took place in summer 2016 and periodic further ScaleX campaigns are planned throughout the lifetime of TERENO. This paper calls for collaboration in future ScaleX campaigns or to use our data in modelling studies. It is also an invitation to emulate the ScaleX concept at other long-term observatories.

Full access
Brian J. Butterworth, Ankur R. Desai, Stefan Metzger, Philip A. Townsend, Mark D. Schwartz, Grant W. Petty, Matthias Mauder, Hannes Vogelmann, Christian G. Andresen, Travis J. Augustine, Timothy H. Bertram, William O. J. Brown, Michael Buban, Patricia Cleary, David J. Durden, Christopher R. Florian, Trevor J. Iglinski, Eric L. Kruger, Kathleen Lantz, Temple R. Lee, Tilden P. Meyers, James K. Mineau, Erik R. Olson, Steven P. Oncley, Sreenath Paleri, Rosalyn A. Pertzborn, Claire Pettersen, David M. Plummer, Laura D. Riihimaki, Eliceo Ruiz Guzman, Joseph Sedlar, Elizabeth N. Smith, Johannes Speidel, Paul C. Stoy, Matthias Sühring, Jonathan E. Thom, David D. Turner, Michael P. Vermeuel, Timothy J. Wagner, Zhien Wang, Luise Wanner, Loren D. White, James M. Wilczak, Daniel B. Wright, and Ting Zheng

Abstract

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.

Open access