Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Margaret A. LeMone x
  • International H2O Project (IHOP) Boundary Layer Processes x
  • All content x
Clear All Modify Search
Diane Strassberg, Margaret A. LeMone, Thomas T. Warner, and Joseph G. Alfieri

Abstract

Comparisons of 10-m above ground level (AGL) wind speeds from numerical weather prediction (NWP) models to point observations consistently show that model daytime wind speeds are slow compared to observations, even after improving model physics and going to smaller grid spacing. Previous authors have attributed the discrepancy to differences between the areas represented by model and observations, and the small surface roughness upstream of wind vanes compared with the corresponding model grid value. Using daytime fair-weather data from the May–June 2002 International H2O Experiment (IHOP_2002), the effect of wind-vane exposure is explored by comparing observed 10-m winds from nine surface-flux towers in well-exposed locations to modeled 10-m winds found by applying Monin–Obukhov (MO) similarity for unstable conditions to flight-track-averaged data collected by the University of Wyoming King Air over flat to rolling terrain with occasional trees and buildings. In the calculations, King Air winds and fluxes are supplemented with thermodynamic means and fluxes from the surface-flux towers. After exercising considerable care in characterizing and reducing biases in aircraft winds and fluxes, the authors found that MO-based surface winds averaged 0.5–0.7 ± 0.2 m s−1 less than those measured—about the same as the smaller reported discrepancies between NWP models and observed winds.

Full access
Margaret A. LeMone, Mukul Tewari, Fei Chen, Joseph G. Alfieri, and Dev Niyogi

Abstract

Sources of differences between observations and simulations for a case study using the Noah land surface model–based High-Resolution Land Data Assimilation System (HRLDAS) are examined for sensible and latent heat fluxes H and LE, respectively; surface temperature Ts; and vertical temperature difference T 0Ts, where T 0 is at 2 m. The observational data were collected on 29 May 2002, using the University of Wyoming King Air and four surface towers placed along a sparsely vegetated 60-km north–south flight track in the Oklahoma Panhandle. This day had nearly clear skies and a strong north–south soil-moisture gradient, with wet soils and widespread puddles at the south end of the track and drier soils to the north. Relative amplitudes of H and LE horizontal variation were estimated by taking the slope of the least squares best-fit straight line ΔLE/ΔH on plots of time-averaged LE as a function of time-averaged H for values along the track. It is argued that observed H and LE values departing significantly from their slope line are not associated with surface processes and, hence, need not be replicated by HRLDAS. Reasonable agreement between HRLDAS results and observed data was found only after adjusting the coefficient C in the Zilitinkevich equation relating the roughness lengths for momentum and heat in HRLDAS from its default value of 0.1 to a new value of 0.5. Using C = 0.1 and adjusting soil moisture to match the observed near-surface values increased horizontal variability in the right sense, raising LE and lowering H over the moist south end. However, both the magnitude of H and the amplitude of its horizontal variability relative to LE remained too large; adjustment of the green vegetation fraction had only a minor effect. With C = 0.5, model-input green vegetation fraction, and our best-estimate soil moisture, H, LE, ΔLE/ΔH, and T 0Ts, were all close to observed values. The remaining inconsistency between model and observations—too high a value of H and too low a value of LE over the wet southern end of the track—could be due to HRLDAS ignoring the effect of open water. Neglecting the effect of moist soils on the albedo could also have contributed.

Full access
Monica Górska, Jordi Vilà-Guerau de Arellano, Margaret A. LeMone, and Chiel C. van Heerwaarden

Abstract

The effects of the horizontal variability of surface properties on the turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide are investigated by combining aircraft observations with large-eddy simulations (LESs). Daytime fair-weather aircraft measurements from the 2002 International H2O Project’s 45-km Eastern Track over mixed grassland and winter wheat in southeast Kansas reveal that the western part of the atmospheric boundary layer was warmer and drier than the eastern part, with higher values of carbon dioxide to the east. The temperature and specific humidity patterns are consistent with the pattern of surface fluxes produced by the High-Resolution Land Data Assimilation System. However, the observed turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide, computed as a function of longitude along the flight track, do not show a clear east–west trend. Rather, the fluxes at 70 m above ground level related better to the surface variability quantified in terms of the normalized differential vegetation index (NDVI), with strong correlation between carbon dioxide fluxes and NDVI.

A first attempt is made to estimate the ratios of the flux at the entrainment zone to the surface flux (entrainment ratios) as a function of longitude. The entrainment ratios averaged from these observations (β θυ ≈ 0.10, βq ≈ −2.4, and β CO2 ≈ −0.58) are similar to the values found from the homogeneous LES experiment with initial and boundary conditions similar to observations.

To understand how surface flux heterogeneity influences turbulent fluxes higher up, a heterogeneous LES experiment is performed in a domain with higher sensible and lower latent heat fluxes in the western half compared to the eastern half. In contrast to the aircraft measurements, the LES turbulent fluxes show a difference in magnitude between the eastern and western halves at 70 and 700 m above ground level. Possible reasons for these differences between results from LES and aircraft measurements are discussed.

Full access
Margaret A. LeMone, Fei Chen, Mukul Tewari, Jimy Dudhia, Bart Geerts, Qun Miao, Richard L. Coulter, and Robert L. Grossman

Abstract

Fair-weather data from the May–June 2002 International H2O Project (IHOP_2002) 46-km eastern flight track in southeast Kansas are compared to simulations using the advanced research version of the Weather Research and Forecasting model coupled to the Noah land surface model (LSM), to gain insight into how the surface influences convective boundary layer (CBL) fluxes and structure, and to evaluate the success of the modeling system in representing CBL structure and evolution. This offers a unique look at the capability of the model on scales the length of the flight track (46 km) and smaller under relatively uncomplicated meteorological conditions.

It is found that the modeled sensible heat flux H is significantly larger than observed, while the latent heat flux (LE) is much closer to observations. The slope of the best-fit line ΔLE/ΔH to a plot of LE as a function of H, an indicator of horizontal variation in available energy H + LE, for the data along the flight track, was shallower than observed. In a previous study of the IHOP_2002 western track, similar results were explained by too small a value of the parameter C in the Zilitinkevich equation used in the Noah LSM to compute the roughness length for heat and moisture flux from the roughness length for momentum, which is supplied in an input table; evidence is presented that this is true for the eastern track as well. The horizontal variability in modeled fluxes follows the soil moisture pattern rather than vegetation type, as is observed; because the input land use map does not capture the observed variation in vegetation. The observed westward rise in CBL depth is successfully modeled for 3 of the 4 days, but the actual depths are too high, largely because modeled H is too high. The model reproduces the timing of observed cumulus cloudiness for 3 of the 4 days.

Modeled clouds lead to departures from the typical clear-sky straight line relating surface H to LE for a given model time, making them easy to detect. With spatial filtering, a straight slope line can be recovered. Similarly, larger filter lengths are needed to produce a stable slope for observed fluxes when there are clouds than for clear skies.

Full access
Margaret A. LeMone, Fei Chen, Mukul Tewari, Jimy Dudhia, Bart Geerts, Qun Miao, Richard L. Coulter, and Robert L. Grossman

Abstract

Fair-weather data along the May–June 2002 International H2O Project (IHOP_2002) eastern track and the nearby Argonne Boundary Layer Experiments (ABLE) facility in southeast Kansas are compared to numerical simulations to gain insight into how the surface influences convective boundary layer (CBL) structure, and to evaluate the success of the modeling system in replicating the observed behavior. Simulations are conducted for 4 days, using the Advanced Research version of the Weather Research and Forecasting (WRF) model coupled to the Noah land surface model (LSM), initialized using the High-Resolution Land Data Assimilation System (HRLDAS). Because the observations focus on phenomena less than 60 km in scale, the model is run with 1-km grid spacing, offering a critical look at high-resolution model behavior in an environment uncomplicated by precipitation.

The model replicates the type of CBL structure on scales from a few kilometers to ∼100 km, but some features at the kilometer scales depend on the grid spacing. Mesoscale (tens of kilometers) circulations were clearly evident on 2 of the 4 days (30 May and 20 June), clearly not evident on 1 day (22 June), with the situation for the fourth day (17 June) ambiguous. Both observed and modeled surface-heterogeneity-generated mesoscale circulations are evident for 30 May. On the other hand, 20 June satellite images show north-northwest–south-southeast cloud streets (rolls) modulated longitudinally, presumably by tropospheric gravity waves oriented normal to the roll axis, creating northeast–southwest ridges and valleys spaced 50–100 km apart. Modeled cloud streets showed similar longitudinal modulation, with the associated two-dimensional structure having maximum amplitude above the CBL and no relationship to the CBL temperature distribution; although there were patches of mesoscale vertical velocity correlated with CBL temperature. On 22 June, convective rolls were the dominant structure in both model and observations.

For the 3 days for which satellite images show cloud streets, WRF produces rolls with the right orientation and wavelength, which grows with CBL depth. Modeled roll structures appeared for the range of CBL depth to Obukhov length ratios (−zi/L) associated with rolls. However, sensitivity tests show that the roll wavelength is also related to the grid spacing, and the modeled convection becomes more cellular with smaller grid spacing.

Full access