Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: Martin Visbeck x
  • Journal of Physical Oceanography x
  • All content x
Clear All Modify Search
Martin Visbeck and Monika Rhein

Abstract

Bottom water temperatures in the central Greenland Sea have been increasing for the last two decades. The warming is most likely related to the absence of deep convective mixing, which cools and freshens the deep water. However, recent observations confirm a slow and steady increase of anthropogenic tracers such as chlorofluorocarbons (CFCs). This points to some amount of bottom water “ventilation” in the absence of deep convective mixing and poses a challenge to our understanding of deep water renewal. One explanation for the observed trends in both temperature and CFCs is significant vertical mixing. The basin-averaged diapycnal diffusivity, required to explain both trends, k υ,av ∼ 2–3 (×10−3 m2 s−1), is very unlikely to occur in the interior of the ocean. However, a diffusivity of k υ,bbl ∼ 10−2 m2 s−1 within a 150-m thick bottom boundary layer would be sufficient to explain the deep tracer increase. The implications of a secondary circulation driven by such large boundary layer mixing are discussed.

Full access
Martin Visbeck and Friedrich Schott

Abstract

The seasonal cycles found in moored current measurements in the equatorial Somali Current region and along the equator between 50° and 60°E are compared with the multilayer Geophysical Fluid Dynamics Laboratory model for the tropical Indian Ocean. The remote forcing of Somali Current transport variations by incident long equatorial waves from the equatorial interior subthermocline region is investigated by analyzing the model velocities of annual and semiannual period. Amplitudes and phases of linear equatorial Rossby and Kelvin waves were least-squares fitted to the model velocities between 5°S and 5°N, 55° and 86°E from 100-m to 1000-m depth. Two cases of wave fits are distinguished: the “free” Kelvin wave case, where the Kelvin waves were fitted independently, and the “reflected” Kelvin wave case, where they were coupled to the Rossby waves by the western boundary condition for a straight slanted (45° to the north) coastline. The wave field velocities explained ∼70% of the spatial variance in the equatorial model subregion and also compared reasonably well with observed current variations along the equator. At the western boundary, the short-wave alongshore transport due to reflected incident long waves was determined and found to be antisymmetric about the equator. The maximum transport variation for the semiannual period due to the short waves was about 5 × 106 m3 s−1 between 150- and 800-m depth at 3° north and south of the equator. Observational evidence for the western boundary transport variations and the sensitivity to changes in the incident wave field are discussed.

Full access
Dirk Olbers and Martin Visbeck

Abstract

The ocean area south of the Antarctic Circumpolar Current (ACC) frontal system is a region of major watermass modification. Influx of North Atlantic Deep Water (NADW), small-scale mixing, eddy transport and diffusion, as well as the fluxes of momentum and buoyancy at the sea surface combine in a complex array of processes to generate the unique stratification of the Southern Ocean with its southward uprising isopycnals and northward flux of Antarctic Intermediate Water (AAIW) and Antarctic Bottom Water. Comprehensive analytical models of this scenario are rare. The authors develop and apply a model based on zonally and temporally averaged theory to explain the conversion of NADW into AAIW with all of the aforementioned processes contained in an extremely simplified way. Eddies appear via a transformed Eulerian mean (TEM) approach with a conventional downgradient parameterization of the meridional density flux. The structure of the eddy coefficient is estimated from hydrographic and wind stress data by a simple inverse approach. Mixing is limited to a near-surface layer and is treated in a most simple entrainment form. The model determines the zonal mean density stratification in the Southern Ocean and the baroclinic transport of the ACC from the applied wind stress and the surface density flux and unravels the role and importance of the different processes responsible for shaping the stratification (Ekman and eddy-induced advection and pumping, mixing, surface buoyancy flux, and eddy-induced diffusion). All of these processes must be present to yield an agreement between the simulated stratification and the observed one, but details of their parameterization might not be too critical. The ACC transport is shown to have a contribution forced by the local wind stress as well as another contribution relating to the nonlocal forcing by wind stress and density flux over the entire Antarctic zone.

Full access
Robert W. Houghton and Martin H. Visbeck

Abstract

The quasi-decadal salinity fluctuations in the upper 300 m of the Labrador Sea are investigated by partitioning all available salinity station data since 1948 by region and bottom depth. There are major freshwater anomalies in the early 1970s (the Great Salinity Anomaly), mid-1980s, and early 1990s. These vary in amplitude throughout the region, being least on the shelf and greatest over the slope region near the Labrador Current. The Labrador Sea cannot be considered a simple conduit for freshwater anomalies originating in the East Greenland Current. There is evidence that local processes modulate the anomaly. The freshwater anomalies in the Labrador Current are approximately twice as large as those in the East Greenland Current. The Baffin Island Current flowing southward through the western Davis Strait is the only local source of freshwater with sufficient volume to account for this increase. The propagation speed, 2–3 cm s−1, of the anomaly along the Labrador Sea margin is much less than the advection speed indicating a highly damped system. The connection of the North Atlantic Oscillation (NAO) with these quasi-decadal salinity fluctuations is most obvious in the Labrador Sea interior, where increased surface buoyancy flux during positive NAO drives deep convective mixing and thus terminates the fresh surface anomalies. Less clear are the processes by which NAO-forced changes of lateral freshwater flux modulate the salinity along the margin. The authors propose a feedback mechanism where, during years of low wind speed, freshwater accumulates offshore of the slope front in the surface layer. The increased upper-layer buoyancy prohibits further mixing, and low salinities persist.

Full access
Qian Song, Arnold L. Gordon, and Martin Visbeck

Abstract

The Indonesian Throughflow (ITF) spreading pathways and time scales in the Indian Ocean are investigated using both observational data and two numerical tracer experiments, one being a three-dimensional Lagrangian trajectory experiment and the other a transit-time probability density function (PDF) tracer experiment, in an ocean general circulation model. The model climatology is in agreement with observations and other model results except that speeds of boundary currents are lower. Upon reaching the western boundary within the South Equatorial Current (SEC), the trajectories of the ITF tracers within the thermocline exhibit bifurcation. The Lagrangian trajectory experiment shows that at the western boundary about 38%±5% thermocline ITF water flows southward to join the Agulhas Current, consequently exiting the Indian Ocean, and the rest, about 62%±5%, flows northward to the north of SEC. In boreal summer, ITF water penetrates into the Northern Hemisphere within the Somali Current. The primary spreading pathway of the thermocline ITF water north of SEC is upwelling to the surface layer with subsequent advection southward within the surface Ekman layer toward the southern Indian Ocean subtropics. There it is subducted and advected northward in the upper thermocline to rejoin the SEC. Both the observations and the trajectory experiment suggest that the upwelling occurs mainly along the coast of Somalia during boreal summer and in the open ocean within a cyclonic gyre in the Tropics south of the equator throughout the year. All the ITF water eventually exits the Indian Ocean along the western boundary within the Mozambique Channel and the east coast of Madagascar and, farther south, the Agulhas Current region. The advective spreading time scales, represented by the elapsed time corresponding to the maximum of transit- time PDF, show that in the upper thermocline the ITF crosses the Indian Ocean, from the Makassar Strait to the east coast of the African continent, on a time scale of about 10 yr and reaches the Arabian Sea on a time scale of over 20 yr.

Full access
Gerd Krahmann, Martin Visbeck, and Gilles Reverdin

Abstract

A general circulation ocean model has been used to study the formation and propagation mechanisms of North Atlantic Oscillation (NAO)-generated temperature anomalies along the pathway of the North Atlantic Current (NAC). The NAO-like wind forcing generates temperature anomalies in the upper 440 m that propagate along the pathway of the NAC in general agreement with the observations. The analysis of individual components of the ocean heat budget reveals that the anomalies are primarily generated by the wind stress anomaly-induced oceanic heat transport divergence. After their generation they are advected with the mean current. Surface heat flux anomalies account for only one-third of the total temperature changes. Along the pathway of the NAC temperature anomalies of opposite signs are formed in the first and second halves of the pathway, a pattern called here the North Atlantic dipole (NAD). The response of the ocean depends fundamentally on R t = (L/υ)/τ, the ratio between the time it takes for anomalies to propagate along the NAC [(L/υ) ∼ 10 years] compared to the forcing period τ. The authors find that for NAO periods shorter than 4 years (R t > 1) the response in the subpolar region is mainly determined by the local forcing. For NAO periods longer than 32 years (R t < 1); however, the SST anomalies in the northeastern part of the NAD become controlled by ocean advection. In the subpolar region maximal amplitudes of the temperature response are found for intermediate (decadal) periods (R t ∼ 1) where the propagation of temperature anomalies constructively interferes with the local forcing. A comparison of the NAO-generated propagating temperature anomalies with those found in observations will be discussed.

Full access
Sonya Legg, Helen Jones, and Martin Visbeck

Abstract

A simple point-vortex “heton” model is used to study localized ocean convection. In particular, the statistically steady state that is established when lateral buoyancy transfer, effected by baroclinic instability, offsets the localized surface buoyancy loss is investigated. Properties of the steady state, such as the statistically steady density anomaly of the convection region, are predicted using the hypothesis of a balance between baroclinic eddy transfer and the localized surface buoyancy loss. These predictions compare favorably with the values obtained through numerical integration of the heton model.

The steady state of the heron model can be related to that in other convection scenarios considered in several recent studies by means of a generalized description of the localized convection. This leads to predictions of the equilibrium density anomalies in these scenarios, which concur with those obtained by other authors. Advantages of the heton model include its inviscid nature, emphasizing the independence of the fluxes affected by the baroclinic eddies from molecular processes, and its extreme economy, allowing a very large parameter space to be covered. This economy allows us to examine more complicated forcing scenarios: for example, forcing regions of varying shape. By increasing the ellipticity of the forcing region, the instability is modified by the shape and, as a result, no increase in lateral fluxes occurs despite the increased perimeter length.

The parameterization of convective mixing by a redistribution of potential vorticity, implicit in the heton model, is corroborated; the heton model equilibrium state has analogous quantitative scaling behavior to that in models or laboratory experiments that resolve the vertical motions. The simplified dynamics of the heton model therefore allows the adiabatic advection resulting from baroclinic instability to be examined in isolation from vertical mixing and diffusive processes. These results demonstrate the importance of baroclinic instability in controlling the properties of a water mass generated by localized ocean convection. A complete parameterization of this process must therefore account for the fluxes induced by horizontal variations in surface buoyancy loss and affected by baroclinic instability.

Full access
Samar Khatiwala, Peter Schlosser, and Martin Visbeck

Abstract

Time series of hydrographic and transient tracer (3H and 3He) observations from the central Labrador Sea collected between 1991 and 1996 are presented to document the complex changes in the tracer fields as a result of variations in convective activity during the 1990s. Between 1991 and 1993, as atmospheric forcing intensified, convection penetrated to progressively increasing depths, reaching ∼2300 m in the winter of 1993. Over that period the potential temperature (θ)/salinity (S) properties of Labrador Sea Water stayed nearly constant as surface cooling and downward mixing of freshwater was balanced by excavating and upward mixing of the warmer and saltier Northeast Atlantic Deep Water. It is shown that the net change in heat content of the water column (150–2500 m) between 1991 and 1993 was negligible compared to the estimated mean heat loss over that period (110 W m−2), implying that the lateral convergence of heat into the central Labrador Sea nearly balances the atmospheric cooling on a surprisingly short timescale. Interestingly, the 3H–3He age of Labrador Sea Water increased during this period of intensifying convection. Starting in 1995, winters were milder and convection was restricted to the upper 800 m. Between 1994 and 1996, the evolution of 3H–3He age is similar to that of a stagnant water body. In contrast, the increase in θ and S over that period implies exchange of tracers with the boundaries via both an eddy-induced overturning circulation and along-isopycnal stirring by eddies [with an exchange coefficient of O(500 m2 s−1)].

The authors construct a freshwater budget for the Labrador Sea and quantitatively demonstrate that sea ice meltwater is the dominant cause of the large annual cycle of salinity in the Labrador Sea, both on the shelf and the interior. It is shown that the transport of freshwater by eddies into the central Labrador Sea (∼140 cm between March and September) can readily account for the observed seasonal freshening. Finally, the authors discuss the role of the eddy-induced overturning circulation with regard to transport and dispersal of the newly ventilated Labrador Sea Water to the boundary current system and compare its strength (2–3 Sv) to the diagnosed buoyancy-forced formation rate of Labrador Sea Water.

Full access
Martin Visbeck, John Marshall, and Helen Jones

Abstract

An initially resting ocean of stratification N is considered, subject to buoyancy loss at its surface of magnitude B 0 over a circular region of radius r, at a latitude where the Coriolis parameter is f. Initially the buoyancy loss gives rise to upright convection as an ensemble of plumes penetrates the stratified ocean creating a vertically mixed layer. However, as deepening proceeds, horizontal density gradients at the edge of the forcing region support a geostrophic rim current, which develops growing meanders through baroclinic instability. Eventually finite-amplitude baroclinic eddies sweep stratified water into the convective region at the surface and transport convected water outward and away below, setting up a steady state in which lateral buoyancy flux offsets buoyancy loss at the surface. In this final state quasi-horizontal baroclinic eddy transfer dominates upright “plume” convection.

By using “parcel theory” to consider the energy transformations taking place, it is shown that the depth, h final at which deepening by convective plumes is arrested by lateral buoyancy flux due to baroclinic eddies, and the time t final it takes to reach this depth, is given by
i1520-0485-26-9-1721-eq1
both independent of rotation. Here γ and β are dimensionless constants that depend on the efficiency of baroclinic eddy transfer. A number of laboratory and numerical experiments are then inspected and carried out to seek confirmation of these parameter dependencies and obtain quantitative estimates of the constants. It is found that γ = 3.9 ± 0.9 and β = 12 ± 3.

Finally, the implications of our study to the understanding of integral properties of deep and intermediate convection in the ocean are discussed.

Full access
Martin Visbeck, John Marshall, Tom Haine, and Mike Spall

Abstract

Parametric representations of oceanic geostrophic eddy transfer of heat and salt are studied ranging fromhorizontal diffusion to the more physically based approaches of Green and Stone (GS) and Gent and McWilliams(GM). The authors argue for a representation that combines the best aspects of GS and GM: transfer coefficientsthat vary in space and time in a manner that depends on the large-scale density fields (GS) and adoption of atransformed Eulerian mean formalism (GM). Recommendations are based upon a two-dimensional (zonally orazimuthally averaged) model with parameterized horizontal and vertical fluxes that is compared to three-dimensional numerical calculations in which the eddy transfer is resolved. Three different scenarios are considered: 1) a convective “chimney” where the baroclinic zone is created by differential surface cooling; 2) spindownof a frontal zone due to baroclinic eddies; and 3) a wind-driven, baroclinically unstable channel. Guided bybaroclinic instability theory and calibrated against eddy-resolving calculations, the authors recommend a formfor the horizontal transfer coefficient given by
i1520-0485-27-3-381-eq1
where Ri = f 2 N 2/M 4 is the large-scale Richardson number and f is the Coriolis parameter; M 2 and N 2 are measuresof the horizontal and vertical stratification of the large-scale flow, l measures the width of the baroclinic zone,and α is a constant of proportionality. In the very different scenarios studied here the authors find α to be a“universal” constant equal to 0.015, not dissimilar to that found by Green for geostrophic eddies in the atmosphere. The magnitude of the implied k, however, varies from 300 m2 s−1 in the chimney to 2000 m2 s−1 inthe wind-driven channel.
Full access