Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Matthew Henry x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Henry E. Fuelberg and Matthew F. Printy

Meso β-scale rawinsonde data from the Atmospheric Variability Experiment-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME) V period (20–21 May 1979) are used to diagnose atmospheric variability in the environment of a convective area. As the storms developed, temperatures increased in the upper stratosphere; however, cooling was observed nearer to the surface and in the lower stratosphere. Height rises above 400 mb produced a mesohigh over the convective area that was most pronounced near 200 mb. Weaker height falls occurred in the lower troposphere.

Wind patterns underwent especially interesting fluctuations. North of the convective area, upper-level winds increased significantly during storm development. Southeast of the convection, however, winds near 200 mb decreased approximately 50% during a 3 h period coinciding with the most active storms. On the other hand, winds at 400 mb almost doubled during the same 3 h period. Strong low-level convergence, upper-level divergence, and ascending motion developed after storm initiation.

Much more detailed study is required to understand this fascinating case. However, many of the current findings about the meso β-scale storm environment are consistent with those previously attributed to feedback mechanisms from severe thunderstorms.

Full access
Alison D. Nugent, Ryan J. Longman, Clay Trauernicht, Matthew P. Lucas, Henry F. Diaz, and Thomas W. Giambelluca

Abstract

Hurricane Lane (2018) was an impactful event for the Hawaiian Islands and provided a textbook example of the compounding hazards that can be produced from a single storm. Over a 4-day period, the island of Hawaiʻi received an island-wide average of 424 mm (17 in.) of rainfall, with a 4-day single-station maximum of 1,444 mm (57 in.), making Hurricane Lane the wettest tropical cyclone ever recorded in Hawaiʻi (based on all available quantitative records). Simultaneously, fires on the islands of nearby Maui and Oʻahu burned 1,043 ha (2,577 ac) and 162 ha (400 ac), respectively. Land-use characteristics and antecedent moisture conditions exacerbated fire hazard, and both fire and rain severity were influenced by the storm environment and local topographical features. Broadscale subsidence around the storm periphery and downslope winds resulted in dry and windy conditions conducive to fire, while in a different region of the same storm, preexisting convection, incredibly moist atmospheric conditions, and upslope flow brought intense, long-duration rainfall. The simultaneous occurrence of rain-driven flooding and landslides, high-intensity winds, and multiple fires complicated emergency response. The compounding nature of the hazards produced during the Hurricane Lane event highlights the need to improve anticipation of complex feedback mechanisms among climate- and weather-related phenomena.

Full access
Eric J. Jensen, Leonhard Pfister, David E. Jordan, Thaopaul V. Bui, Rei Ueyama, Hanwant B. Singh, Troy D. Thornberry, Andrew W. Rollins, Ru-Shan Gao, David W. Fahey, Karen H. Rosenlof, James W. Elkins, Glenn S. Diskin, Joshua P. DiGangi, R. Paul Lawson, Sarah Woods, Elliot L. Atlas, Maria A. Navarro Rodriguez, Steven C. Wofsy, Jasna Pittman, Charles G. Bardeen, Owen B. Toon, Bruce C. Kindel, Paul A. Newman, Matthew J. McGill, Dennis L. Hlavka, Leslie R. Lait, Mark R. Schoeberl, John W. Bergman, Henry B. Selkirk, M. Joan Alexander, Ji-Eun Kim, Boon H. Lim, Jochen Stutz, and Klaus Pfeilsticker

Abstract

The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).

Full access