Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Michael B. Ek x
  • Advancing Drought Monitoring and Prediction x
  • Refine by Access: All Content x
Clear All Modify Search
Youlong Xia, Michael B. Ek, David Mocko, Christa D. Peters-Lidard, Justin Sheffield, Jiarui Dong, and Eric F. Wood

Abstract

This study analyzed uncertainties and correlations over the United States among four ensemble-mean North American Land Data Assimilation System (NLDAS) percentile-based drought indices derived from monthly mean evapotranspiration ET, total runoff Q, top 1-m soil moisture SM1, and total column soil moisture SMT. The results show that the uncertainty is smallest for SM1, largest for SMT, and moderate for ET and Q. The strongest correlation is between SM1 and SMT, and the weakest correlation is between ET and Q. The correlation between ET and SM1 (SMT) is strongest in arid–semiarid regions, and the correlation between Q and SM1 (SMT) is strongest in more humid regions in the Pacific Northwest and the Southeast. Drought frequency analysis shows that SM1 has the most frequent drought occurrence, followed by SMT, Q, and ET. The study compared the NLDAS drought indices (a research product) with the U.S. Drought Monitor (USDM; an operational product) in terms of drought area percentage derived from each product. It proposes an optimal blend of NLDAS drought indices by searching for weights for each index that minimizes the RMSE between NLDAS and USDM drought area percentage for a 10-yr period (2000–09) with a cross validation. It reconstructed a 30-yr (1980–2009) Objective Blended NLDAS Drought Index (OBNDI) and monthly drought percentage. Overall, the OBNDI performs the best with the smallest RMSE, followed by SM1 and SMT. It should be noted that the contribution to OBNDI from different variables varies with region. So a single formula is probably not the best representation of a blended index. The representation of a blended index using the multiple formulas will be addressed in a future study.

Full access