Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Michael Bell x
  • Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) x
  • All content x
Clear All Modify Search
Julian F. Quinting, Michael M. Bell, Patrick A. Harr, and Sarah C. Jones


The structure and the environment of Typhoon Sinlaku (2008) were investigated during its life cycle in The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC). On 20 September 2008, during the transformation stage of Sinlaku’s extratropical transition (ET), research aircraft equipped with dual-Doppler radar and dropsondes documented the structure of the convection surrounding Sinlaku and low-level frontogenetical processes. The observational data obtained were assimilated with the recently developed Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) software tool. The resulting analysis provides detailed insight into the ET system and allows specific features of the system to be identified, including deep convection, a stratiform precipitation region, warm- and cold-frontal structures, and a dry intrusion. The analysis offers valuable information about the interaction of the features identified within the transitioning tropical cyclone. The existence of dry midlatitude air above warm-moist tropical air led to strong potential instability. Quasigeostrophic diagnostics suggest that forced ascent during warm frontogenesis triggered the deep convective development in this potentially unstable environment. The deep convection itself produced a positive potential vorticity anomaly at midlevels that modified the environmental flow. A comparison of the operational ECMWF analysis and the observation-based SAMURAI analysis exhibits important differences. In particular, the ECMWF analysis does not capture the deep convection adequately. The nonexistence of the deep convection has considerable implications on the potential vorticity structure of the remnants of the typhoon at midlevels. An inaccurate representation of the thermodynamic structure of the dry intrusion has considerable implications on the frontogenesis and the quasigeostrophic forcing.

Full access