Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Michael Bell x
  • Journal of Atmospheric and Oceanic Technology x
  • All content x
Clear All Modify Search
Annette M. Foerster and Michael M. Bell


Thermodynamic retrievals can derive pressure and temperature information from kinematic measurements in regions where no in situ observations are available. This study presents a new retrieval technique called SAMURAI-TR (Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation–Thermodynamic Retrieval) that derives three-dimensional fields of pressure and density potential temperature from multiple-Doppler radar data using a variational approach. SAMURAI-TR advances existing methods by 1) allowing for a horizontal variation in the reference-state definition and 2) representing the retrieved quantities of pressure and temperature as three-dimensional functions consisting of a series of finite-element cubic B-splines. The first advancement enables the retrieval to explicitly account for the large radial gradient of the mean thermodynamic state in tropical cyclones and other rapidly rotating vortices. The second advancement allows for specification of the three-dimensional pressure and temperature gradients as pseudo-observations from Doppler-derived winds, effectively linking the vertical levels without the use of the thermodynamic equation or a microphysical closure. The retrieval uses only the horizontal and vertical momentum equations, their derivatives, and low-pass filters. The accuracy and sensitivity of the retrieval are assessed using a WRF simulation of a tropical cyclone. SAMURAI-TR has good accuracy compared to prior techniques and retrieves pressure to within 0.25 hPa and temperature to within 0.7 K RMSE. The application of the method to real data is demonstrated using multiple-Doppler data from Hurricane Rita (2005).

Full access
Huaqing Cai, Wen-Chau Lee, Michael M. Bell, Cory A. Wolff, Xiaowen Tang, and Frank Roux


Uncertainties in aircraft inertial navigation system and radar-pointing angles can have a large impact on the accuracy of airborne dual-Doppler analyses. The Testud et al. (THL) method has been routinely applied to data collected by airborne tail Doppler radars over flat and nonmoving terrain. The navigation correction method proposed in Georgis et al. (GRH) extended the THL method over complex terrain and moving ocean surfaces by using a variational formulation but its capability over ocean has yet to be tested. Recognizing the limitations of the THL method, Bosart et al. (BLW) proposed to derive ground speed, tilt, and drift errors by statistically comparing aircraft in situ wind with dual-Doppler wind at the flight level. When combined with the THL method, the BLW method can retrieve all navigation errors accurately; however, it can be applied only to flat surfaces, and it is rather difficult to automate. This paper presents a generalized navigation correction method (GNCM) based on the GRH method that will serve as a single algorithm for airborne tail Doppler radar navigation correction for all possible surface conditions. The GNCM includes all possible corrections in the cost function and implements a new closure assumption by taking advantage of an accurate aircraft ground speed derived from GPS technology. The GNCM is tested extensively using synthetic airborne Doppler radar data with known navigation errors and published datasets from previous field campaigns. Both tests show the GNCM is able to correct the navigation errors associated with airborne tail Doppler radar data with adequate accuracy.

Full access