Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Michael Bell x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Michael S. Halpert and Gerald D. Bell

Abstract

No Abstract Available

Full access
Michael S. Halpert and Gerald D. Bell

Abstract

No Abstract Available

Full access
Michael A. Bell and Peter J. Lamb

Abstract

Since the late 1960s, the West African Sudan–Sahel zone (10°–18°N) has experienced persistent and often severe drought, which is among the most undisputed and largest regional climate changes in the last half-century. Previous documentation of the drought generally has used monthly, seasonal, and annual rainfall totals and departures, in a standard “climate” approach that overlooks the underlying weather system variability. Most Sudan–Sahel rainfall occurs during June–September and is delivered by westward-propagating, linear-type, mesoscale convective systems [disturbance lines (DLs)] that typically have much longer north–south (102–103 km) than east–west (10–102 km) dimensions. Here, a large set of daily rainfall data is analyzed to relate DL and regional climate variability on intraseasonal-to-multidecadal time scales for 1951–98. Rain gauge–based indices of DL frequency, size, and intensity are evaluated on a daily basis for four 440-km square “catchments” that extend across most of the West African Sudan–Sahel (18°W–4°E) and are then distilled into 1951–98 time series of 10-day and seasonal frequency/magnitude summary statistics. This approach is validated using Tropical Applications of Meteorology Using Satellite Data (TAMSAT) satellite IR cold cloud duration statistics for the same 1995–98 DLs.

Results obtained for all four catchments are remarkably similar on each time scale. Long-term (1951–98) average DL size/organization increases monotonically from early June to late August and then decreases strongly during September. In contrast, average DL intensity maximizes 10–30 days earlier than DL size/organization and is distributed more symmetrically within the rainy season for all catchments except the westernmost, where DL intensity tracks DL size/organization very closely. Intraseasonal and interannual DL variability is documented using sets of very deficient (8) and much more abundant (7) rainy seasons during 1951–98. The predominant mode of rainfall extremes involves near-season-long suppression or enhancement of the seasonal cycles of DL size/organization and intensity, especially during the late July–late August rainy season peak. Other extreme seasons result solely from peak season anomalies. On the multidecadal scale, the dramatic decline in seasonal rainfall totals from the early 1950s to the mid-1980s is shown to result from pronounced downtrends in DL size/organization and intensity. Surprisingly, this DL shrinking–fragmentation–weakening is not accompanied by increases in catchment rainless days (i.e., total DL absence). Like the seasonal rainfall totals, DL size/organization and intensity increase slightly after the mid-1980s.

Full access
Jhordanne J. Jones, Michael M. Bell, and Philip J. Klotzbach

Abstract

Given recent insights into the role of anticyclonic Rossby wave breaking (AWB) in driving subseasonal and seasonal North Atlantic tropical cyclone (TC) activity, this study further examines tropical versus subtropical impacts on TC activity by considering large-scale influences on boreal summer tropical zonal vertical wind shear (VWS) variability, a key predictor of seasonal TC activity. Through an empirical orthogonal function analysis, it is shown that subtropical AWB activity drives the second mode of variability in tropical zonal VWS, while El Niño–Southern Oscillation (ENSO) primarily drives the leading mode of variability. Linear regressions of the four leading principal components against tropical North Atlantic zonal VWS and accumulated cyclone energy show that while the leading mode holds much of the regression strength, some improvement can be achieved with the addition of the second and third modes. Furthermore, an index of AWB-associated VWS anomalies, a proxy for AWB impacts on the large-scale environment, may be a better indicator of summertime VWS anomalies. The utilization of this index may be used to better understand AWB’s contribution to seasonal TC activity.

Restricted access