Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Ming Ye x
  • All content x
Clear All Modify Search
Binhui Liu, Ming Xu, Mark Henderson, Ye Qi, and Yiqing Li


In analyzing daily climate data from 305 weather stations in China for the period from 1955 to 2000, the authors found that surface air temperatures are increasing with an accelerating trend after 1990. They also found that the daily maximum (T max) and minimum (T min) air temperature increased at a rate of 1.27° and 3.23°C (100 yr)−1 between 1955 and 2000. Both temperature trends were faster than those reported for the Northern Hemisphere, where T max and T min increased by 0.87° and 1.84°C (100 yr)−1 between 1950 and 1993. The daily temperature range (DTR) decreased rapidly by −2.5°C (100 yr)−1 from 1960 to 1990; during that time, minimum temperature increased while maximum temperature decreased slightly. Since 1990, the decline in DTR has halted because T max and T min increased at a similar pace during the 1990s. Increased minimum and maximum temperatures were most pronounced in northeast China and were lowest in the southwest. Cloud cover and precipitation correlated poorly with the decreasing temperature range. It is argued that a decline in solar irradiance better explains the decreasing range of daily temperatures through its influence on maximum temperature. With declining solar irradiance even on clear days, and with decreases in cloud cover, it is posited that atmospheric aerosols may be contributing to the changing solar irradiance and trends of daily temperatures observed in China.

Full access
Yanjuan Wu, Shuang-Ye Wu, Jiahong Wen, Felipe Tagle, Ming Xu, and Jianguo Tan


In this study, the potential future changes of mean and extreme precipitation in the middle and lower Yangtze River basin (MLYRB), eastern China, are assessed using the models of phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical model simulations are first compared with observations in order to evaluate model performance. In general, the models simulate the precipitation mean and frequency better than the precipitation intensity and extremes, but still have difficulty capturing precipitation patterns over complex terrains. They tend to overestimate precipitation mean, frequency, and intensity while underestimating the extremes. After correcting for model biases, the spatial variation of mean precipitation projected by the multimodel ensemble mean (MME) is improved, so the MME after the bias correction is used to project changes for the years 2021–50 and 2071–2100 relative to 1971–2000 under two emission scenarios: RCP4.5 and RCP8.5. Results show that with global warming, precipitation will become less frequent but more intense over the MLYRB. Relative changes in extremes generally exceed those in mean precipitation. Moreover, increased precipitation extremes are also expected even in places where mean precipitation is projected to decrease in 2021–50. The overall increase in extreme precipitation could potentially lead to more frequent floods in this already flood-prone region.

Full access
Jiali Ju, Heng Dai, Chuanhao Wu, Bill X. Hu, Ming Ye, Xingyuan Chen, Dongwei Gui, Haifan Liu, and Jin Zhang


Comparison and quantification of different uncertainties of future climate change involved in the modeling of a hydrological system are highly important for both hydrological modelers and policy-makers. However, few studies have accurately estimated the relative importance of different sources of uncertainty at different spatiotemporal scales. Here, a hierarchical sensitivity analysis framework (HSAF) incorporated with a variance-based global sensitivity analysis is developed to quantify the spatiotemporal contributions of different uncertainties in hydrological impacts of climate change in two different climatic (humid and semiarid) basins in China. The uncertainty sources include three emission scenarios (ESs), 20 global climate models (GCs), three hydrological models (HMs), and the associated sensitive hydrological parameters (PAs) screened and sampled by the Morris and Latin hypercube sampling methods, respectively. The results indicate that the overall trend of uncertainty is PA > HM > GC > ES, but their uncertainties have discrepancies in projections of different hydrological variables. The HM uncertainty in annual and monthly discharge projections is generally larger than the PA uncertainty in the humid basin than semiarid basin. The PA has greater uncertainty in extreme hydrological event (annual peak discharge) projections than in annual discharge projections for both basins (particularly for the humid basin), but contributes larger uncertainty to annual and monthly discharge projections in the semiarid basin than humid basin. The GC contributes larger uncertainty in all the hydrological variables projections in the humid basin than semiarid basin, while the ES uncertainty is rather limited in both basins. Overall, our results suggest there is greater spatiotemporal variability of hydrological uncertainty in more arid regions.

Restricted access