Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Norman G. Loeb x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
Norman G. Loeb, Tamás Várnai, and David M. Winker

Abstract

Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel-scale variations in cloud-top height (i.e., “cloud bumps”). Monte Carlo simulations comparing 1D model radiances to radiances from overcast cloud fields with 1) cloud-top height variations but constant cloud volume extinction, 2) flat tops but horizontal variations in cloud volume extinction, and 3) variations in both cloud-top height and cloud extinction are performed over a ≈4 km × 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance differences. The reason 3D–1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the topmost portions of the cloud. While reflectance deviations from 1D theory are much larger for bumpy clouds than for flat clouds with variable cloud extinction, differences in cloud albedo are comparable for these two cases.

Full access
Masanori Saito, Ping Yang, Norman G. Loeb, and Seiji Kato

Abstract

Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved representation of bulk snow properties in conjunction with considering the particle size distribution, particle shape, and internally mixed black carbon (BC). Spectral snow albedos computed with two snow layers with the SGHM model implemented in an adding–doubling radiative transfer model agree with observations. Top-snow-layer optical properties essentially determine spectral snow albedo when the top-layer snow water equivalent (SWE) is large. When the top-layer SWE is less than 1 mm, the second-snow-layer optical properties have nonnegligible impacts on the albedo of the snow surface. Snow albedo enhancement with increasing solar zenith angle (SZA) largely depends on snow particle effective radius and also internally mixed BC. Based on the SGHM model and various sensitivity studies, single- and two-layer snow albedos are parameterized for six spectral bands used in NASA Langley Research Center’s modified Fu–Liou broadband radiative transfer model. Parameterized albedo is expressed as a function of snow particle effective radii of the two layers, SWE in the top layer, internally mixed BC mass fraction in both layers, and SZA. Both single-layer and two-layer parameterizations provide band-mean snow albedo consistent with rigorous calculations, achieving correlation coefficients close to 0.99 for all bands.

Full access
Jean-Claude Buriez, Marie Doutriaux-Boucher, Frédéric Parol, and Norman G. Loeb

Abstract

The usual procedure for retrieving the optical thickness of liquid water clouds from satellite-measured radiances is based on the assumption of plane-parallel layers composed of liquid water droplets. This study investigates the validity of this assumption from Advanced Earth Orbiting Satellite–Polarization and Directionality of the Earth's Reflectances (ADEOS–POLDER) observations. To do that, the authors take advantage of the multidirectional viewing capability of the POLDER instrument, which functioned nominally aboard ADEOS from November 1996 to June 1997.

The usual plane-parallel cloud model composed of water droplets with an effective radius of 10 μm provides a reasonable approximation of the angular dependence in scattering at visible wavelengths from overcast liquid water clouds for moderate solar zenith angles. However, significant differences between model and observations appear in the rainbow direction and for the smallest observable values of scattering angle (Θ < 90°). A better overall agreement would be obtained for droplets with an effective radius of about 7–8 μm for continental liquid water clouds. On the other hand, changing the water droplet size distribution would not lead to a significant improvement for maritime situations. When horizontal variations in cloud optical thickness are considered by using the independent pixel approximation (IPA), a small improvement is obtained over the whole range of scattering angles but significant discrepancies remain for Θ < 80°, that is for large solar zenith angles in the forward-scattering direction. The remaining differences between various models based on the plane-parallel radiative transfer and POLDER observations are thought to be due to variations in cloud shape.

Full access