Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Patrick Harr x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Jessie C. Carman, Daniel P. Eleuterio, Timothy C. Gallaudet, Gerald L. Geernaert, Patrick A. Harr, Jack A. Kaye, David H. McCarren, Craig N. McLean, Scott A. Sandgathe, Frederick Toepfer, and Louis W. Uccellini

Abstract

The United States has had three operational numerical weather prediction centers since the Joint Numerical Weather Prediction Unit was closed in 1958. This led to separate paths for U.S. numerical weather prediction, research, technology, and operations, resulting in multiple community calls for better coordination. Since 2006, the three operational organizations—the U.S. Air Force, the U.S. Navy, and the National Weather Service—and, more recently, the Department of Energy, the National Aeronautics and Space Administration, the National Science Foundation, and the National Oceanic and Atmospheric Administration/Office of Oceanic and Atmospheric Research, have been working to increase coordination. This increasingly successful effort has resulted in the establishment of a National Earth System Prediction Capability (National ESPC) office with responsibility to further interagency coordination and collaboration. It has also resulted in sharing of data through an operational global ensemble, common software standards, and model components among the agencies. This article discusses the drivers, the progress, and the future of interagency collaboration.

Full access
Duane E. Waliser, Mitchell W. Moncrieff, David Burridge, Andreas H. Fink, Dave Gochis, B. N. Goswami, Bin Guan, Patrick Harr, Julian Heming, Huang-Hsuing Hsu, Christian Jakob, Matt Janiga, Richard Johnson, Sarah Jones, Peter Knippertz, Jose Marengo, Hanh Nguyen, Mick Pope, Yolande Serra, Chris Thorncroft, Matthew Wheeler, Robert Wood, and Sandra Yuter

The representation of tropical convection remains a serious challenge to the skillfulness of our weather and climate prediction systems. To address this challenge, the World Climate Research Programme (WCRP) and The Observing System Research and Predictability Experiment (THORPEX) of the World Weather Research Programme (WWRP) are conducting a joint research activity consisting of a focus period approach along with an integrated research framework tailored to exploit the vast amounts of existing observations, expanding computational resources, and the development of new, high-resolution modeling frameworks. The objective of the Year of Tropical Convection (YOTC) is to use these constructs to advance the characterization, modeling, parameterization, and prediction of multiscale tropical convection, including relevant two-way interactions between tropical and extratropical systems. This article highlights the diverse array of scientifically interesting and socially important weather and climate events associated with the WCRP–WWRP/THORPEX YOTC period of interest: May 2008–April 2010. Notable during this 2-yr period was the change from cool to warm El Niño– Southern Oscillation (ENSO) states and the associated modulation of a wide range of smaller time- and space-scale tropical convection features. This period included a near-record-setting wet North American monsoon in 2008 and a very severe monsoon drought in India in 2009. There was also a plethora of tropical wave activity, including easterly waves, the Madden–Julian oscillation, and convectively coupled equatorial wave interactions. Numerous cases of high-impact rainfall events occurred along with notable features in the tropical cyclone record. The intent of this article is to highlight these features and phenomena, and in turn promote their interrogation via theory, observations, and models in concert with the YOTC program so that improved understanding and pre- dictions of tropical convection can be afforded.

Full access
Stephen A. Cohn, Terry Hock, Philippe Cocquerez, Junhong Wang, Florence Rabier, David Parsons, Patrick Harr, Chun-Chieh Wu, Philippe Drobinski, Fatima Karbou, Stéphanie Vénel, André Vargas, Nadia Fourrié, Nathalie Saint-Ramond, Vincent Guidard, Alexis Doerenbecher, Huang-Hsiung Hsu, Po-Hsiung Lin, Ming-Dah Chou, Jean-Luc Redelsperger, Charlie Martin, Jack Fox, Nick Potts, Kathryn Young, and Hal Cole

Constellations of driftsonde systems— gondolas floating in the stratosphere and able to release dropsondes upon command— have so far been used in three major field experiments from 2006 through 2010. With them, high-quality, high-resolution, in situ atmospheric profiles were made over extended periods in regions that are otherwise very difficult to observe. The measurements have unique value for verifying and evaluating numerical weather prediction models and global data assimilation systems; they can be a valuable resource to validate data from remote sensing instruments, especially on satellites, but also airborne or ground-based remote sensors. These applications for models and remote sensors result in a powerful combination for improving data assimilation systems. Driftsondes also can support process studies in otherwise difficult locations—for example, to study factors that control the development or decay of a tropical disturbance, or to investigate the lower boundary layer over the interior Antarctic continent. The driftsonde system is now a mature and robust observing system that can be combined with flight-level data to conduct multidisciplinary research at heights well above that reached by current research aircraft. In this article we describe the development and capabilities of the driftsonde system, the exemplary science resulting from its use to date, and some future applications.

Full access
James D. Doyle, Jonathan R. Moskaitis, Joel W. Feldmeier, Ronald J. Ferek, Mark Beaubien, Michael M. Bell, Daniel L. Cecil, Robert L. Creasey, Patrick Duran, Russell L. Elsberry, William A. Komaromi, John Molinari, David R. Ryglicki, Daniel P. Stern, Christopher S. Velden, Xuguang Wang, Todd Allen, Bradford S. Barrett, Peter G. Black, Jason P. Dunion, Kerry A. Emanuel, Patrick A. Harr, Lee Harrison, Eric A. Hendricks, Derrick Herndon, William Q. Jeffries, Sharanya J. Majumdar, James A. Moore, Zhaoxia Pu, Robert F. Rogers, Elizabeth R. Sanabia, Gregory J. Tripoli, and Da-Lin Zhang

Abstract

Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.

Open access