Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Paul W. Stackhouse Jr x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
Paul W. Stackhouse Jr. and Graeme L. Stephens

Abstract

A two-stream radiative transfer model is used to examine the radiative properties of cirrus clouds and compare simulations with the observations made during the cirrus FIRE IFO. The sensitivity of cirrus cloud radiative properties to altitude and size distribution changes are examined. The net radiative effect of cirrus in the infrared is largely determined by the amount of ice in the cloud and the surface—cloud base temperature difference (and thus altitude). Increases (decreases) of this temperature difference produce a net radiative heating (cooling). Cloud-top solar heating increases (decreases) with increasing (decreasing) altitude as the optical path of the atmosphere above the cloud layer decreases (increases). The impact of varying concentrations of ice particles less than 100 μm in diameter is also examined. The addition of these particles greatly enhances the longwave absorption and shortwave albedo of cirrus clouds in a manner that is spectrally dependent. Model simulations using observed microphysical and environmental conditions are compared to measured cirrus cloud radiative properties. Although cloud inhomogeneties are shown to be quite large, broad agreement in the cloud emittance is found between the highly uncertain observations of FIRE, other aircraft observations, and model simulations. Similar comparisons of the solar albedo reveal cirrus clouds to be significantly brighter than predicted by the model. Possible explanations of this brightening anomaly suggest that it may not be possible to use Mie scattering to model the cloud albedo.

Full access
Laura M. Hinkelman, K. Franklin Evans, Eugene E. Clothiaux, Thomas P. Ackerman, and Paul W. Stackhouse Jr.

Abstract

Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce 20 three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of xz plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-averaged transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction (i.e., the cloud fraction with respect to the solar beam direction).

Full access
Graeme L. Stephens, Si-Chee Tsay, Paul W. Stackhouse Jr., and Piotr J. Flatau

Abstract

This paper examines the effects of the relationship between cirrus cloud ice water content and cloud temperature on climate change. A simple mechanistic climate model is used to study the feedback between ice water content and temperature. The central question studied in this paper concerns the extent to which both the radiative and microphysical properties of cirrus cloud influence such a feedback. To address this question, a parameterization of the albedo and emissivity of clouds is introduced. Observations that relate the ice water content to cloud temperature are incorporated in the parameterization to introduce a temperature dependence to both albedo and emittance. The cloud properties relevant to the cloud feedback are expressed as functions of particles size re, asymmetry parameter g and cloud temperature and analyses of aircraft measurements, lidar and ground based radiometer data are used to select re and g. It was shown that scattering calculations assuming spherical particles with a distribution described by re = 16 μm reasonably matched the lidar and radiometer data. However, comparison of cloud radiation properties measured from aircraft to those parameterized in this study required values of g significantly smaller than those derived for spheres but consistent with our understanding of nonspherical particle scattering.

The climate simulations revealed that the influence of cirrus cloud on climate was strongly affected by the choice of re and g: parameters that are both poorly known for cirrus. It was further shown that the effect of ice water feedback on a CO2 warming simulation could be either positive or negative depending on the value of re assumed. Based on these results, it was concluded that prediction of cirrus cloud feedback on climate is both premature and limited by our lack of understanding of the relationship between size and shape of ice crystals and the gross radiative properties of cirrus.

Full access