Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: R. M. Johnson x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Gregory L. Johnson, Jerry M. Davis, Thomas R. Karl, Alan L. McNab, J. Dan Tarpley, and Peter Bloomfield

Abstract

Atmospheric sounding products from NOAA's polar-orbiting satellites were used to derive and test predictive equations of rural shelter-level maximum and minimum temperatures. Sounding data from both winter and summer months were combined with surface data from over 5300 cooperative weather stations in the continental United States to develop multiple linear regression equations. Separate equations were developed for both maximum and minimum temperature, using the three types of sounding retrievals (clear, partly cloudy, and cloudy). Clear retrieval models outperformed others, and maximum temperatures were more accurately predicted than minimums. Average standard deviations of observed rural shelter temperatures within sounding search areas were of similar magnitude to root-mean-square errors from satellite estimates for most clear and partly cloudy cases, but were significantly less for cloudy retrieval cases. Model validation for surrogate polar and tropical climatic regions showed success in application of the four clear retrieval models (maximum and minimum temperature, for both winter and summer). This indicates the potential adaptability of these models to estimates of rural shelter temperature in areas outside of the United States.

Full access
Gregory L. Johnson, Jerry M. Davis, Thomas R. Karl, Alan L. McNab, Kevin P. Gallo, J. Dan Tarpley, and Peter R. Bloomfield

Abstract

Urban temperature bias, defined to be the difference between a shelter temperature reading of unknown but suspected urban influence and some appropriate rural reference temperature, is estimated through the use of polar-orbiting satellite data. Predicted rural temperatures, based on a method developed using sounding data, are shown to be of reasonable accuracy in many cases for urban bias assessments using minimum temperature data from selected urban regions in the United States in July 1989. Assessments of predicted urban bias were based on comparisons with observed bias, as well as independent measures of urban heat island influence, such as population statistics and urban-rural differences in a vegetation index. This technique provides a means of determining urban bias in regions where few if any rural reference stations are available, or where inhomogeneities exist in land surface characteristics or rural station locations.

Full access
William S. Olson, Lin Tian, Mircea Grecu, Kwo-Sen Kuo, Benjamin T. Johnson, Andrew J. Heymsfield, Aaron Bansemer, Gerald M. Heymsfield, James R. Wang, and Robert Meneghini

Abstract

In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar–radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice–air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraftborne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

Full access