Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: R. Michael Reynolds x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
Stuart Matthews, Jörg M. Hacker, Jason Cole, Jeffrey Hare, Charles N. Long, and R. Michael Reynolds


Nauru, a small island in the tropical Pacific, generates cloud plumes that may grow to over 100-km lengths. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces these cloud plumes. Observations of the surface layer were made from two ships in the vicinity of Nauru and from instruments on the island. The structure of the atmospheric boundary layer over the island was investigated using aircraft flights. Cloud production over Nauru was examined using remote sensing instruments. The diurnal cycles of surface meteorology and radiation are characterized at a point near the west (downwind) coast of Nauru. The spatial variation of surface meteorology and radiation are also examined using surface and aircraft measurements. During the day, the island surface layer is warmer than the marine surface layer and wind speed is lower than over the ocean. Surface heating forces the growth of a thermal internal boundary layer, within which a plume of cumulus clouds forms. Cloud production begins early in the morning over the ocean near the island’s lee shore; as heating intensifies during the day, cloud production moves upwind over Nauru. These clouds form a plume that may extend over 100 km downwind of Nauru. Aircraft observations showed that a plume of warm, dry air develops over the island that extends 15–20 km downwind before dissipating. Limited observations suggest that the cloud plume may be sustained farther downwind of Nauru by a pair of convective rolls. Suggestions for further investigation of the cloud plume are made.

Full access
Om P. Tripathi, Mark Baldwin, Andrew Charlton-Perez, Martin Charron, Jacob C. H. Cheung, Stephen D. Eckermann, Edwin Gerber, David R. Jackson, Yuhji Kuroda, Andrea Lang, Justin McLay, Ryo Mizuta, Carolyn Reynolds, Greg Roff, Michael Sigmond, Seok-Woo Son, and Tim Stockdale


The first multimodel study to estimate the predictability of a boreal sudden stratospheric warming (SSW) is performed using five NWP systems. During the 2012/13 boreal winter, anomalous upward propagating planetary wave activity was observed toward the end of December, which was followed by a rapid deceleration of the westerly circulation around 2 January 2013, and on 7 January 2013 the zonal-mean zonal wind at 60°N and 10 hPa reversed to easterly. This stratospheric dynamical activity was followed by an equatorward shift of the tropospheric jet stream and by a high pressure anomaly over the North Atlantic, which resulted in severe cold conditions in the United Kingdom and northern Europe. In most of the five models, the SSW event was predicted 10 days in advance. However, only some ensemble members in most of the models predicted weakening of westerly wind when the models were initialized 15 days in advance of the SSW. Further dynamical analysis of the SSW shows that this event was characterized by the anomalous planetary wavenumber-1 amplification followed by the anomalous wavenumber-2 amplification in the stratosphere, which resulted in a split vortex occurring between 6 and 8 January 2013. The models have some success in reproducing wavenumber-1 activity when initialized 15 days in advance, but they generally failed to produce the wavenumber-2 activity during the final days of the event. Detailed analysis shows that models have reasonably good skill in forecasting tropospheric blocking features that stimulate wavenumber-2 amplification in the troposphere, but they have limited skill in reproducing wavenumber-2 amplification in the stratosphere.

Full access
Clark Evans, Kimberly M. Wood, Sim D. Aberson, Heather M. Archambault, Shawn M. Milrad, Lance F. Bosart, Kristen L. Corbosiero, Christopher A. Davis, João R. Dias Pinto, James Doyle, Chris Fogarty, Thomas J. Galarneau Jr., Christian M. Grams, Kyle S. Griffin, John Gyakum, Robert E. Hart, Naoko Kitabatake, Hilke S. Lentink, Ron McTaggart-Cowan, William Perrie, Julian F. D. Quinting, Carolyn A. Reynolds, Michael Riemer, Elizabeth A. Ritchie, Yujuan Sun, and Fuqing Zhang


Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.

Open access