Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: R. Wood x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
R. Wood

Abstract

Detailed observations of stratiform boundary layer clouds on 12 days are examined with specific reference to drizzle formation processes. The clouds differ considerably in mean thickness, liquid water path (LWP), and droplet concentration. Cloud-base precipitation rates differ by a factor of 20 between cases. The lowest precipitation rate is found in the case with the highest droplet concentration even though this case had by far the highest LWP, suggesting that drizzle can be severely suppressed in polluted clouds.

The vertical and horizontal structure of cloud and drizzle liquid water and bulk microphysical parameters are examined in detail. In general, the highest concentration of r > 20 μm drizzle drops is found toward the top of the cloud, and the mean volume radius of the drizzle drops increases monotonically from cloud top to base. The resulting precipitation rates are largest at the cloud base but decrease markedly only in the upper third of the cloud. Below cloud, precipitation rates decrease markedly with distance below base due to evaporation, and are broadly consistent in most cases with the results from a simple sedimentation–evaporation model. Evidence is presented that suggests evaporating drizzle is cooling regions of the subcloud layer, which could result in dynamical feedbacks. A composite power spectrum of the horizontal spatial series of precipitation rate is found to exhibit a power-law scaling from the smallest observable scales to close to the maximum observable scale (∼30 km). The exponent is considerably lower (1.1–1.2) than corresponding exponents for LWP variability obtained in other studies (∼1.5–2), demonstrating that there is relatively more variability of drizzle on small scales. Singular measures analysis shows that drizzle fields are much more intermittent than the cloud liquid water content fields, consistent with a drizzle production process that depends strongly upon liquid water content. The adiabaticity of the clouds, which can be modeled as a simple balance between drizzle loss and turbulent replenishment, is found to decrease if the time scale for drizzle loss is shorter than roughly 5–10 eddy turnover time scales. Finally, the data are compared with three simple scalings derived from recent observations of drizzle in subtropical stratocumulus clouds.

Full access
R. Wood

Abstract

This is the second of two observational papers examining drizzle in stratiform boundary layer clouds. Part I details the vertical and horizontal structure of cloud and drizzle parameters, including some bulk microphysical variables. In this paper, the focus is on the in situ size-resolved microphysical measurements, particularly of drizzle drops (r > 20 μm). Layer-averaged size distributions of drizzle drops within cloud are shown to be well represented using either a truncated exponential or a truncated lognormal size distribution. The size-resolved microphysical measurements are used to estimate autoconversion and accretion rates by integration of the stochastic collection equation (SCE). These rates are compared with a number of commonly used bulk parameterizations of warm rain formation. While parameterized accretion rates agree well with those derived from the SCE initialized with observed spectra, the autoconversion rates seriously disagree in some cases. These disagreements need to be addressed in order to bolster confidence in large-scale numerical model predictions of the aerosol second indirect effect. Cloud droplet coalescence removal rates and mass and number fall rate relationships used in the bulk microphysical schemes are also compared, revealing some potentially important discrepancies. The relative roles of autoconversion and accretion are estimated by examination of composite profiles from the 12 flights. Autoconversion, although necessary for the production of drizzle drops, is much less important than accretion throughout the lower 80% of the cloud layer in terms of the production of drizzle liquid water. The SCE calculations indicate that the autoconversion rate depends strongly upon the cloud droplet concentration Nd such that a doubling of Nd would lead to a reduction in autoconversion rate of between 2 and 4.

Radar reflectivity–precipitation rate (ZR) relationships suitable for radar use are derived and are shown to be significantly biased in some cases by the undersampling of large (r > 200 μm) drops with the 2D-C probe. A correction based upon the extrapolation to larger sizes using the exponential size distribution changes the ZR relationship, leading to the conclusion that consideration should be given to sampling issues when examining higher moments of the drop size distribution in drizzling stratiform boundary layer clouds.

Full access
Robert Wood and Paul R. Field

Abstract

Relationships among total water, condensed water, and cloud fraction in boundary layer and cold tropospheric stratiform clouds are investigated using a large observational dataset collected by the U.K. Met. Office C-130 aircraft. Values of the above parameters are estimated using horizontal aircraft runs ranging from 40 to 80 km in length. Boundary layer (warm cloud) data were taken from the Atlantic Stratocumulus Transition Experiment (ASTEX) and First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE). Free tropospheric (cold cloud) data were taken from the European Cloud and Radiation Experiment (EUCREX). In both warm and cold cloud a single reasonably well-defined relationship exists between the cloud fraction and the total water content (vapor + condensate) when normalized with the saturation specific humidity. A relationship exists between the condensed water content and the cloud fraction when appropriately scaled with the saturation specific humidity. Functional forms fitted to the data are used as comparators to test three existing diagnostic cloud fraction parameterization schemes.

Full access
A. R. Brown and N. Wood

Abstract

Numerical simulations are used to investigate the impact on the stable boundary layer of moderate topography (with hill heights in some cases comparable to the undisturbed boundary layer depth). Area-averaged properties of the resulting boundary layers, which are often highly inhomogeneous, are diagnosed. The presence of the hills leads to enhanced turbulence and drag, and a deepening of the area-averaged boundary layers (over and above that due to a simple displacement effect). The ability of well-established formulas for the depth of the boundary layer over homogeneous terrain to predict this deepening is investigated. Finally, the implications of the results for the use in large-scale weather and climate prediction models of effective roughness length parameterizations of the effects of hills are discussed. While not capturing some of the more detailed effects, the simplest approach of using a roughness length independent of stability is found to perform reasonably well in predicting the total surface drag.

Full access
R. Wood, S. Irons, and P. R. Jonas

Abstract

Any population of cloud droplets forming on polydisperse condensation nuclei is thermodynamically unstable. There is no value of the supersaturation for which the growth rate of all the droplets is zero, so that if some droplets are in equilibrium, then some must have positive and some negative growth rates. Droplets with positive growth rates will continue to grow at the expense of those with negative growth rates. This effect has been termed the ripening process, and has been postulated to be a potential mechanism to explain broad droplet size distributions in stratiform clouds. In this paper multiple parcel trajectories are used, derived using a simple representation of the turbulent dynamics, to examine the time evolution of the droplet size distribution in a nonentraining stratiform cloud. It is shown that the magnitude of the effect is critically dependent upon the mean parcel in-cloud residence time. The simulations suggest that, for a stratiform clouds of h = 400 m thickness, and a vertical wind standard deviation of σ w = 0.6 m s–1 (typical for stratocumulus clouds in a fairly vigorous, well-mixed boundary layer), the ripening effect is negligible, in that the droplet size distribution changes little with time. However, clouds with low σ w = 0.2 m s–1 (typical of weaker stratus clouds) show a marked spectral ripening effect over a period of several hours. Ripening is observed in the numerical model in both clean and polluted aerosol distributions. Autoconversion rates calculated from the droplet size distributions increase markedly with time as ripening takes place. It is suggested that to accurately model droplet size distributions in stratus cloud, it may be necessary to take into account the distribution of in-cloud parcel residence time.

Full access
R. Paul Lawson, Sarah Woods, and Hugh Morrison

Abstract

The rapid glaciation of tropical cumulus clouds has been an enigma and has been debated in the literature for over 60 years. Possible mechanisms responsible for the rapid freezing have been postulated, but until now direct evidence has been lacking. Recent high-speed photography of electrostatically suspended supercooled drops in the laboratory has shown that freezing events produce small secondary ice particles. Aircraft observations from the Ice in Clouds Experiment–Tropical (ICE-T), strongly suggest that the drop-freezing secondary ice production mechanism is operating in strong, tropical cumulus updraft cores. The result is the production of small ice particles colliding with large supercooled drops (hundreds of microns up to millimeters in diameter), producing a cascading process that results in rapid glaciation of water drops in the updraft. The process was analyzed from data collected using state-of-the-art cloud particle probes during 54 Learjet penetrations of strong cumulus updraft cores over open ocean in a temperature range from 5° to −20°C. Repeated Learjet penetrations of an updraft core containing 3–5 g m−3 supercooled liquid showed an order-of-magnitude decrease in liquid mass concentration 3 min later at an elevation 1–1.5 km higher in the cloud. The aircraft observations were simulated using a one-dimensional cloud model with explicit bin microphysics. The model was initialized with drop and ice particle size distributions observed prior to rapid glaciation. Simulations show that the model can explain the observed rapid glaciation by the drop-freezing secondary ice production process and subsequent riming, which results when large supercooled drops collide with ice particles.

Full access
Yangang Liu, Peter H. Daum, R. McGraw, and R. Wood

Abstract

Existing Sundqvist-type parameterizations, which only consider dependence of the autoconversion rate on cloud liquid water content, are generalized to explicitly account for the droplet concentration and relative dispersion of the cloud droplet size distribution as well. The generalized Sundqvist-type parameterization includes the more commonly used Kessler-type parameterization as a special case, unifying the two different types of parameterizations for the autoconversion rate. The generalized Sundqvist-type parameterization is identical with the Kessler-type parameterization presented in Part I beyond the autoconversion threshold, but exhibits a more realistic, smooth transition in the vicinity of the autoconversion threshold (threshold behavior) in contrast to the discontinuously abrupt transition embodied in the Kessler-type parameterization. A new Sundqvist-type parameterization is further derived by applying the expression for the critical radius derived from the kinetic potential theory to the generalized Sundqvist-type parameterization. The new parameterization eliminates the need for defining the driving radius and for prescribing the critical radius associated with Kessler-type parameterizations. The two-part structure of the autoconversion process raises questions regarding model-based empirical parameterizations obtained by fitting simulation results from detailed collection models with a single function.

Full access
Andrew J. Heymsfield, Aaron Bansemer, Michael R. Poellot, and Norm Wood

Abstract

The detailed microphysical processes and properties within the melting layer (ML)—the continued growth of the aggregates by the collection of the small particles, the breakup of these aggregates, the effects of relative humidity on particle melting—are largely unresolved. This study focuses on addressing these questions for in-cloud heights from just above to just below the ML. Observations from four field programs employing in situ measurements from above to below the ML are used to characterize the microphysics through this region. With increasing temperatures from about −4° to +1°C, and for saturated conditions, slope and intercept parameters of exponential fits to the particle size distributions (PSD) fitted to the data continue to decrease downward, the maximum particle size (largest particle sampled for each 5-s PSD) increases, and melting proceeds from the smallest to the largest particles. With increasing temperature from about −4° to +2°C for highly subsaturated conditions, the PSD slope and intercept continue to decrease downward, the maximum particle size increases, and there is relatively little melting, but all particles experience sublimation.

Full access
Ryan Eastman, Christopher R. Terai, Daniel P. Grosvenor, and Robert Wood

Abstract

A Lagrangian framework is developed to show the daily-scale time evolution of low clouds over the eastern subtropical oceans. An identical framework is applied to two general circulation models (GCMs): the CAM5 and UKMET and a set of satellite observations. This approach follows thousands of parcels as they advect downwind in the subtropical trade winds, comparing cloud evolution in time and space. This study tracks cloud cover, in-cloud liquid water path (CLWP), droplet concentration N d, planetary boundary layer (PBL) depth, and rain rate as clouds transition from regions with predominately stratiform clouds to regions containing mostly trade cumulus. The two models generate fewer clouds with greater N d relative to observations. Models show stronger Lagrangian cloud cover decline and greater PBL deepening when compared with observations. In comparing frequency distributions of cloud variables over time, it is seen that models generate increasing frequencies of nearly clear conditions at the expense of overcast conditions, whereas observations show transitions from overcast to cloud amounts between 50% and 90%. Lagrangian decorrelation time scales (e-folding time τ) of cloud cover and CLWP are between 11 and 19 h for models and observations, although they are a bit shorter for models. A Lagrangian framework applied here resolves and compares the time evolution of cloud systems as they adjust to environmental perturbations in models and observations. Increasing subsidence in the overlying troposphere leads to declining cloud cover, CLWP, PBL depth, and rain rates in models and observations. Modeled cloud responses to other meteorological variables are less consistent with observations, suggesting a need for continuing mechanical improvements in GCMs.

Restricted access
Vincent E. Larson, Robert Wood, Paul R. Field, Jean-Christophe Golaz, Thomas H. Vonder Haar, and William R. Cotton

Abstract

A grid box in a numerical model that ignores subgrid variability has biases in certain microphysical and thermodynamic quantities relative to the values that would be obtained if subgrid-scale variability were taken into account. The biases are important because they are systematic and hence have cumulative effects. Several types of biases are discussed in this paper. Namely, numerical models that employ convex autoconversion formulas underpredict (or, more precisely, never overpredict) autoconversion rates, and numerical models that use convex functions to diagnose specific liquid water content and temperature underpredict these latter quantities. One may call these biases the “grid box average autoconversion bias,” “grid box average liquid water content bias,” and “grid box average temperature bias,” respectively, because the biases arise when grid box average values are substituted into formulas valid at a point, not over an extended volume. The existence of these biases can be derived from Jensen’s inequality.

To assess the magnitude of the biases, the authors analyze observations of boundary layer clouds. Often the biases are small, but the observations demonstrate that the biases can be large in important cases.

In addition, the authors prove that the average liquid water content and temperature of an isolated, partly cloudy, constant-pressure volume of air cannot increase, even temporarily. The proof assumes that liquid water content can be written as a convex function of conserved variables with equal diffusivities. The temperature decrease is due to evaporative cooling as cloudy and clear air mix. More generally, the authors prove that if an isolated volume of fluid contains conserved scalars with equal diffusivities, then the average of any convex, twice-differentiable function of the conserved scalars cannot increase.

Full access