Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: R. Wood x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Kevin R. Wood and James E. Overland

A unique glimpse of the Arctic from a period before the present era of climate warming is found in the records of the first International Polar Year (IPY) of 1882–83. Inspired by the Austrian scientist and explorer Carl Weyprecht, the purpose of the IPY was to discover the fundamental laws governing global meteorological and geophysical phenomena. It was understood that new discoveries would depend upon a program of simultaneous observations that encompassed the polar regions. The collection and analysis of the first series of coordinated meteorological observations ever obtained in the Arctic was one of the principal objects of the IPY. The field program was successfully completed and a vast body of data was collected, but afterward it fell into obscurity with little analysis completed.

We have analyzed for the first time the synchronous meteorological observations recorded during the first IPY. This analysis contributes to the goal of the upcoming fourth IPY scheduled for 2007–08: to understand the climate changes currently unfolding in the Arctic/Antarctic within the context of the past. We found that surface air temperature (SAT) and sea level pressure (SLP) observed during 1882–83 were within the limits of recent climatology, but with a slight skew toward colder temperatures, and showed a wide range of variability from place to place over the course of the year, which is a feature typical of the Arctic climate today. Monthly SAT, SLP, and associated phenological anomalies were regionally coherent and consistent with patterns of variability in the atmospheric circulation such as the North Atlantic Oscillation (NAO). Evidence of a strong NAO signature in the observed SAT anomalies during the first IPY highlights the impact of large-scale atmospheric circulation patterns on regional climate variability in the Arctic, both today and in the past.

Full access
C. R. Mechoso, R. Wood, R. Weller, C. S. Bretherton, A. D. Clarke, H. Coe, C. Fairall, J. T. Farrar, G. Feingold, R. Garreaud, C. Grados, J. McWilliams, S. P. de Szoeke, S. E. Yuter, and P. Zuidema

The present paper describes the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS), an international research program focused on the improved understanding and modeling of the southeastern Pacific (SEP) climate system on diurnal to interannual time scales. In the framework of the SEP climate, VOCALS has two fundamental objectives: 1) improved simulations by coupled atmosphere–ocean general circulation models (CGCMs), with an emphasis on reducing systematic errors in the region; and 2) improved estimates of the indirect effects of aerosols on low clouds and climate, with an emphasis on the more precise quantification of those effects. VOCALS major scientific activities are outlined, and selected achievements are highlighted. Activities described include monitoring in the region, a large international field campaign (the VOCALS Regional Experiment), and two model assessments. The program has already produced significant advances in the understanding of major issues in the SEP: the coastal circulation and the diurnal cycle, the ocean heat budget, factors controlling precipitation and formation of pockets of open cells in stratocumulus decks, aerosol impacts on clouds, and estimation of the first aerosol indirect effect. The paper concludes with a brief presentation on VOCALS contributions to community capacity building before a summary of scientific findings and remaining questions.

Full access
Hylke E. Beck, Eric F. Wood, Ming Pan, Colby K. Fisher, Diego G. Miralles, Albert I. J. M. van Dijk, Tim R. McVicar, and Robert F. Adler

Abstract

We present Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2), a gridded precipitation P dataset spanning 1979–2017. MSWEP V2 is unique in several aspects: i) full global coverage (all land and oceans); ii) high spatial (0.1°) and temporal (3 hourly) resolution; iii) optimal merging of P estimates based on gauges [WorldClim, Global Historical Climatology Network-Daily (GHCN-D), Global Summary of the Day (GSOD), Global Precipitation Climatology Centre (GPCC), and others], satellites [Climate Prediction Center morphing technique (CMORPH), Gridded Satellite (GridSat), Global Satellite Mapping of Precipitation (GSMaP), and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT)], and reanalyses [European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and Japanese 55-year Reanalysis (JRA-55)]; iv) distributional bias corrections, mainly to improve the P frequency; v) correction of systematic terrestrial P biases using river discharge Q observations from 13,762 stations across the globe; vi) incorporation of daily observations from 76,747 gauges worldwide; and vii) correction for regional differences in gauge reporting times. MSWEP V2 compares substantially better with Stage IV gauge–radar P data than other state-of-the-art P datasets for the United States, demonstrating the effectiveness of the MSWEP V2 methodology. Global comparisons suggest that MSWEP V2 exhibits more realistic spatial patterns in mean, magnitude, and frequency. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2 are 955, 781, and 1,025 mm yr−1, respectively. Other P datasets consistently underestimate P amounts in mountainous regions. Using MSWEP V2, P was estimated to occur 15.5%, 12.3%, and 16.9% of the time on average for the global, land, and ocean domains, respectively. MSWEP V2 provides unique opportunities to explore spatiotemporal variations in P, improve our understanding of hydrological processes and their parameterization, and enhance hydrological model performance.

Open access
C. R. Wood, L. Järvi, R. D. Kouznetsov, A. Nordbo, S. Joffre, A. Drebs, T. Vihma, A. Hirsikko, I. Suomi, C. Fortelius, E. O'Connor, D. Moiseev, S. Haapanala, J. Moilanen, M. Kangas, A. Karppinen, T. Vesala, and J. Kukkonen

The Helsinki Urban Boundary-Layer Atmosphere Network (UrBAN: http://urban.fmi.fi) is a dedicated research-grade observational network where the physical processes in the atmosphere above the city are studied. Helsinki UrBAN is the most poleward intensive urban research observation network in the world and thus will allow studying some unique features such as strong seasonality. The network's key purpose is for the understanding of the physical processes in the urban boundary layer and associated fluxes of heat, momentum, moisture, and other gases. A further purpose is to secure a research-grade database, which can be used internationally to validate and develop numerical models of air quality and weather prediction. Scintillometers, a scanning Doppler lidar, ceilometers, a sodar, eddy-covariance stations, and radiometers are used. This equipment is supplemented by auxiliary measurements, which were primarily set up for general weather and/or air-quality mandatory purposes, such as vertical soundings and the operational Doppler radar network. Examples are presented as a testimony to the potential of the network for urban studies, such as (i) evidence of a stable boundary layer possibly coupled to an urban surface, (ii) the comparison of scintillometer data with sonic anemometry above an urban surface, (iii) the application of scanning lidar over a city, and (iv) combination of sodar and lidar to give a fuller range of sampling heights for boundary layer profiling.

Full access
Kevin R. Wood, Steven R. Jayne, Calvin W. Mordy, Nicholas Bond, James E. Overland, Carol Ladd, Phyllis J. Stabeno, Alexander K. Ekholm, Pelle E. Robbins, Mary-Beth Schreck, Rebecca Heim, and Janet Intrieri

Abstract

Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).

Open access
Curtis R. Wood, Samantha J. Arnold, Ahmed A. Balogun, Janet F. Barlow, Stephen E. Belcher, Rex E. Britter, Hong Cheng, Adrian Dobre, Justin J. N. Lingard, Damien Martin, Marina K. Neophytou, Fredrik K. Petersson, Alan G. Robins, Dudley E. Shallcross, Robert J. Smalley, James E. Tate, Alison S. Tomlin, and Iain R. White

In the event of a release of toxic gas in the center of London, emergency services personnel would need to determine quickly the extent of the area contaminated. The transport of pollutants by turbulent flow within the complex streets and building architecture of London, United Kingdom, is not straightforward, and we might wonder whether it is at all possible to make a scientifically reasoned decision. Here, we describe recent progress from a major U.K. project, Dispersion of Air Pollution and its Penetration into the Local Environment (DAPPLE; information online at www.dapple.org.uk). In DAPPLE, we focus on the movement of airborne pollutants in cities by developing a greater understanding of atmospheric flow and dispersion within urban street networks. In particular, we carried out full-scale dispersion experiments in central London from 2003 through 2008 to address the extent of the dispersion of tracers following their release at street level. These measurements complemented previous studies because 1) our focus was on dispersion within the first kilometer from the source, when most of the material was expected to remain within the street network rather than being mixed into the boundary layer aloft; 2) measurements were made under a wide variety of meteorological conditions; and 3) central London represents a European, rather than North American, city geometry. Interpretation of the results from the full-scale experiments was supported by extensive numerical and wind tunnel modeling, which allowed more detailed analysis under idealized and controlled conditions. In this article, we review the full-scale DAPPLE methodologies and show early results from the analysis of the 2007 field campaign data.

Full access
Yolande L. Serra, Jennifer S. Haase, David K. Adams, Qiang Fu, Thomas P. Ackerman, M. Joan Alexander, Avelino Arellano, Larissa Back, Shu-Hua Chen, Kerry Emanuel, Zeljka Fuchs, Zhiming Kuang, Benjamin R Lintner, Brian Mapes, David Neelin, David Raymond, Adam H. Sobel, Paul W. Staten, Aneesh Subramanian, David W. J. Thompson, Gabriel Vecchi, Robert Wood, and Paquita Zuidema
Open access
Paquita Zuidema, Ping Chang, Brian Medeiros, Ben P. Kirtman, Roberto Mechoso, Edwin K. Schneider, Thomas Toniazzo, Ingo Richter, R. Justin Small, Katinka Bellomo, Peter Brandt, Simon de Szoeke, J. Thomas Farrar, Eunsil Jung, Seiji Kato, Mingkui Li, Christina Patricola, Zaiyu Wang, Robert Wood, and Zhao Xu

Abstract

Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.

Full access
Dara Entekhabi, Ghassem R. Asrar, Alan K. Betts, Keith J. Beven, Rafael L. Bras, Christopher J. Duffy, Thomas Dunne, Randal D. Koster, Dennis P. Lettenmaier, Dennis B. McLaughlin, William J. Shuttleworth, Martinus T. van Genuchten, Ming-Ying Wei, and Eric F. Wood

Hydrologic research at the interface between the atmosphere and land surface is undergoing a dramatic change in focus, driven by new societal priorities, emerging technologies, and better understanding of the earth system. In this paper an agenda for land surface hydrology research is proposed in order to open the debate for more comprehensive prioritization of science and application activities in the hydrologic sciences. Sets of priority science questions are posed and research strategies for achieving progress are identified. The proposed research agenda is also coupled with ongoing international data collection programs. The driving science questions and related research agenda lead to a call for the second International Hydrologic Decade. This activity will help to ensure that hydrology starts the new millennium as a coherent and vital discipline.

Full access
Andrew M. Vogelmann, Greg M. McFarquhar, John A. Ogren, David D. Turner, Jennifer M. Comstock, Graham Feingold, Charles N. Long, Haflidi H. Jonsson, Anthony Bucholtz, Don R. Collins, Glenn S. Diskin, Hermann Gerber, R. Paul Lawson, Roy K. Woods, Elisabeth Andrews, Hee-Jung Yang, J. Christine Chiu, Daniel Hartsock, John M. Hubbe, Chaomei Lo, Alexander Marshak, Justin W. Monroe, Sally A. McFarlane, Beat Schmid, Jason M. Tomlinson, and Tami Toto

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about twothirds of the flights during which clouds were sampled occurred in May and June, boundary layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the cloud flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze aerosol– cloud relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

Full access