Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: R. Wood x
  • Review Articles in Monthly Weather Review x
  • All content x
Clear All Modify Search
Markus Gross, Hui Wan, Philip J. Rasch, Peter M. Caldwell, David L. Williamson, Daniel Klocke, Christiane Jablonowski, Diana R. Thatcher, Nigel Wood, Mike Cullen, Bob Beare, Martin Willett, Florian Lemarié, Eric Blayo, Sylvie Malardel, Piet Termonia, Almut Gassmann, Peter H. Lauritzen, Hans Johansen, Colin M. Zarzycki, Koichi Sakaguchi, and Ruby Leung

Abstract

Numerical weather, climate, or Earth system models involve the coupling of components. At a broad level, these components can be classified as the resolved fluid dynamics, unresolved fluid dynamical aspects (i.e., those represented by physical parameterizations such as subgrid-scale mixing), and nonfluid dynamical aspects such as radiation and microphysical processes. Typically, each component is developed, at least initially, independently. Once development is mature, the components are coupled to deliver a model of the required complexity. The implementation of the coupling can have a significant impact on the model. As the error associated with each component decreases, the errors introduced by the coupling will eventually dominate. Hence, any improvement in one of the components is unlikely to improve the performance of the overall system. The challenges associated with combining the components to create a coherent model are here termed physics–dynamics coupling. The issue goes beyond the coupling between the parameterizations and the resolved fluid dynamics. This paper highlights recent progress and some of the current challenges. It focuses on three objectives: to illustrate the phenomenology of the coupling problem with references to examples in the literature, to show how the problem can be analyzed, and to create awareness of the issue across the disciplines and specializations. The topics addressed are different ways of advancing full models in time, approaches to understanding the role of the coupling and evaluation of approaches, coupling ocean and atmosphere models, thermodynamic compatibility between model components, and emerging issues such as those that arise as model resolutions increase and/or models use variable resolutions.

Open access
Clark Evans, Kimberly M. Wood, Sim D. Aberson, Heather M. Archambault, Shawn M. Milrad, Lance F. Bosart, Kristen L. Corbosiero, Christopher A. Davis, João R. Dias Pinto, James Doyle, Chris Fogarty, Thomas J. Galarneau Jr., Christian M. Grams, Kyle S. Griffin, John Gyakum, Robert E. Hart, Naoko Kitabatake, Hilke S. Lentink, Ron McTaggart-Cowan, William Perrie, Julian F. D. Quinting, Carolyn A. Reynolds, Michael Riemer, Elizabeth A. Ritchie, Yujuan Sun, and Fuqing Zhang

Abstract

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.

Open access