Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Rabindra Palikonda x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Patrick Minnis, J. Kirk Ayers, Rabindra Palikonda, and Dung Phan

Abstract

Rising global air traffic and its associated contrails have the potential for affecting climate via radiative forcing. Current estimates of contrail climate effects are based on coverage by linear contrails that do not account for spreading and, therefore, represent the minimum impact. The maximum radiative impact is estimated by assuming that long-term trends in cirrus coverage are due entirely to air traffic in areas where humidity is relatively constant. Surface observations from 1971 to 1995 show that cirrus increased significantly over the northern oceans and the United States while decreasing over other land areas except over western Europe where cirrus coverage was relatively constant. The surface observations are consistent with satellite-derived trends over most areas. Land cirrus trends are positively correlated with upper-tropospheric (300 hPa) humidity (UTH), derived from the National Centers for Environmental Prediction (NCEP) analyses, except over the United States and western Europe where air traffic is heaviest. Over oceans, the cirrus trends are negatively correlated with the NCEP relative humidity suggesting some large uncertainties in the maritime UTH. The NCEP UTH decreased dramatically over Europe while remaining relatively steady over the United States, thereby permitting an assessment of the cirrus–contrail relationship over the United States. Seasonal cirrus changes over the United States are generally consistent with the annual cycle of contrail coverage and frequency lending additional evidence to the role of contrails in the observed trend. It is concluded that the U.S. cirrus trends are most likely due to air traffic. The cirrus increase is a factor of 1.8 greater than that expected from current estimates of linear contrail coverage suggesting that a spreading factor of the same magnitude can be used to estimate the maximum effect of the contrails. From the U.S. results and using mean contrail optical depths of 0.15 and 0.25, the maximum contrail–cirrus global radiative forcing is estimated to be 0.006–0.025 W m−2 depending on the radiative forcing model. Using results from a general circulation model simulation of contrails, the cirrus trends over the United States are estimated to cause a tropospheric warming of 0.2°–0.3°C decade−1, a range that includes the observed tropospheric temperature trend of 0.27°C decade−1 between 1975 and 1994. The magnitude of the estimated surface temperature change and the seasonal variations of the estimated temperature trends are also in good agreement with the corresponding observations.

Full access
David Painemal, Kuan-Man Xu, Anning Cheng, Patrick Minnis, and Rabindra Palikonda

Abstract

The mean structure and diurnal cycle of southeast (SE) Atlantic boundary layer clouds are described with satellite observations and multiscale modeling framework (MMF) simulations during austral spring (September–November). Hourly resolution cloud fraction (CF) and cloud-top height (H T) are retrieved from Meteosat-9 radiances using modified Clouds and the Earth’s Radiant Energy System (CERES) Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms, whereas liquid water path (LWP) is from the University of Wisconsin microwave satellite climatology. The MMF simulations use a 2D cloud-resolving model (CRM) that contains an advanced third-order turbulence closure to explicitly simulate cloud physical processes in every grid column of a general circulation model. The model accurately reproduces the marine stratocumulus spatial extent and cloud cover. The mean cloud cover spatial variability in the model is primarily explained by the boundary layer decoupling strength, whereas a boundary layer shoaling accounts for a coastal decrease in CF. Moreover, the core of the stratocumulus cloud deck is concomitant with the location of the strongest temperature inversion. Although the model reproduces the observed westward boundary layer deepening and the spatial variability of LWP, it overestimates LWP by 50%. Diurnal cycles of H T, CF, and LWP from satellites and the model have the same phase, with maxima during the early morning and minima near 1500 local solar time, which suggests that the diurnal cycle is driven primarily by solar heating. Comparisons with the SE Pacific cloud deck indicate that the observed amplitude of the diurnal cycle is modest over the SE Atlantic, with a shallower boundary layer as well. The model qualitatively reproduces these interregime differences.

Full access