Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Richard Betts x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Peter Good, Chris Jones, Jason Lowe, Richard Betts, and Nicola Gedney

Abstract

Future changes in atmospheric greenhouse gas concentrations and associated influences on climate could affect the future sustainability of tropical forests. The authors report on tropical forest projections from the new Hadley Centre Global Environmental Model version 2 Earth System configuration (HadGEM2-ES) and compare them to results from the previous generation model [third climate configuration of the Met Office Unified Model in lower resolution with carbon cycle (HadCM3LC)], which had projected near-complete dieback of the Amazon rain forest for a business as usual scenario. In contrast, HadGEM2-ES projects minimal change in Amazon forest extent. The main aim of this study is a preliminary investigation of this difference between the two models. It is found that around 40% of the difference in forest dieback projections is associated with differences in the projected change in dry-season length. Differences in control climatologies of temperature and dry-season length, projected regional warming, and the forest response to climate and CO2 also all contribute to the increased survival of forest in HadGEM2-ES. However, HadGEM2-ES does not invalidate HadCM3LC: Amazon dieback remains a possible scenario of dangerous change that requires further understanding. The authors discuss the relevance to assessments of dieback risk and future work toward narrowing uncertainty about the fate of the Amazon forest.

Full access
Peter Good, Chris Jones, Jason Lowe, Richard Betts, Ben Booth, and Chris Huntingford

Abstract

Future changes in atmospheric greenhouse gas concentrations, and their associated influences on climate, will affect the future sustainability of tropical forests. While dynamic global vegetation models (DGVMs) represent the processes by which climate and vegetation interact, there is limited quantitative understanding of how specific environmental drivers each affect the simulated patterns of vegetation behavior and the resultant tropical forest fraction. Here, an attempt is made to improve on the qualitative understanding of how changes in dry season length, temperature, and CO2 combine to drive forest changes. Investigation of these topics is undertaken by integrating the Hadley Centre Climate Model version 3, run at lower spatial resolution with a coupled climate–carbon cycle (HadCM3LC), to steady state. This represents the situation where vegetation has adjusted fully to the prevailing climate and vice versa, permitting direct analysis of how climate and vegetation interact. These links are quantified by fitting the simulated tropical broadleaf tree fraction with a simple function of CO2 concentration, surface temperature, and dry season length. The resulting empirical function (denoted dry season resilience or DSR) is able to predict a sustainable tropical broadleaf fraction in this model across a very wide range of climates. The DSR function can also be used to compare the importance of different environmental drivers and to explore other emissions scenarios. While this DSR function is specific to the vegetation–land surface scheme in HadCM3LC, the method employed in this work is applicable to steady-state simulations from other vegetation–land surface schemes.

The DSR metric is applied first as a framework to evaluate the DGVM by comparison of the simulated and observed forest fractions. For tropical broadleaf resilience in this model, a warming of 1°C is approximately equivalent to a 2-week increase in dry season. In HadCM3LC climate model projections under the International Panel on Climate Change’s (IPCC’s) Special Report on Emissions Scenarios (SRES) A1B scenario, twenty-first-century increases in forest resilience due to CO2 fertilization approximately balance the tropical mean decrease from warming (the relative importance of rainfall and temperature changes depends on the uncertain spatial pattern of rainfall change). DSR is a tool that could be applied to different vegetation models to help us understand and narrow uncertainty in tropical forest projections.

Full access
Peter Uhe, Dann Mitchell, Paul D. Bates, Myles R. Allen, Richard A. Betts, Chris Huntingford, Andrew D. King, Benjamin M. Sanderson, and Hideo Shiogama

Abstract

Precipitation events cause disruption around the world and will be altered by climate change. However, different climate modeling approaches can result in different future precipitation projections. The corresponding “method uncertainty” is rarely explicitly calculated in climate impact studies and major reports but can substantially change estimated precipitation changes. A comparison across five commonly used modeling activities shows that, for changes in mean precipitation, less than half of the regions analyzed had significant changes between the present climate and 1.5°C global warming for the majority of modeling activities. This increases to just over half of the regions for changes between present climate and 2°C global warming. There is much higher confidence in changes in maximum 1-day precipitation than in mean precipitation, indicating the robust influence of thermodynamics in the climate change effect on extremes. We also find that none of the modeling activities captures the full range of estimates from the other methods in all regions. Our results serve as an uncertainty map to help interpret which regions require a multimethod approach. Our analysis highlights the risk of overreliance on any single modeling activity and the need for confidence statements in major synthesis reports to reflect this method uncertainty. Considering multiple sources of climate projections should reduce the risks of policymakers being unprepared for impacts of warmer climates relative to using single-method projections to make decisions.

Restricted access