Search Results

You are looking at 1 - 10 of 31 items for :

  • Author or Editor: Robert H. Johns x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
David R. Smith, Ira W. Geer, Robert S. Weinbeck, John T. Snow, and William H. Beasley

During the summer of 1993, Project ATMOSPHERE, in cooperation with the University of Oklahoma School of Meteorology, conducted a workshop to enhance both the meteorological background and leadership skills of AMS Atmospheric Education Resource Agents (AERAs). Fifty-eight teachers representing 39 states and the District of Columbia attended this workshop, which focused on atmospheric water processes and severe local storms. In addition to lectures and laboratory activities, AERAs also visited a variety of research and operational support facilities in the Norman area. This workshop was the third phase of training for AERAs, who represent the AMS in their local areas, providing instructional guidance for teachers and curricular input on the atmospheric sciences to their respective local and state educational agencies.

Full access
Katrina S. Virts, John M. Wallace, Michael L. Hutchins, and Robert H. Holzworth

The seasonally and diurnally varying frequency of lightning flashes provides a measure of the frequency of occurrence of intense convection and, as such, is useful in describing the Earth's climate. Here we present a few highlights of a global lightning climatology based on data from the ground-based World Wide Lightning Location Network (WWLLN), for which global observations began in 2004. Because WWLLN monitors global lightning continuously, it samples ~100 times as many lightning strokes/flashes per year as the Tropical Rainfall Measuring Mission's (TRMM) Lightning Imaging Sensor (LIS). Using WWLLN data it is possible to generate a global lightning climatology that captures seasonal variations, including those associated with the midlatitude storm tracks, and resolves the diurnal cycle, thereby illuminating the interplay between sea breezes, mountain–valley wind systems, and remotely forced gravity waves in touching off thunderstorms in a wide variety of geographical settings. The text of the paper shows a few samples of regional, WWLLN-based seasonal (the midlatitude storm tracks and the Mediterranean) and diurnal (the Maritime Continent, the central Andes, and equatorial Africa) climatologies, and the online supplement presents animations of the global seasonal cycle and of the diurnal cycle for the latter regions.

Full access
John H. Seinfeld, Ralph A. Kahn, Theodore L. Anderson, Robert J. Charlson, Roger Davies, David J. Diner, John A. Ogren, Stephen E. Schwartz, and Bruce A. Wielicki

Aerosols are involved in a complex set of processes that operate across many spatial and temporal scales. Understanding these processes, and ensuring their accurate representation in models of transport, radiation transfer, and climate, requires knowledge of aerosol physical, chemical, and optical properties and the distributions of these properties in space and time. To derive aerosol climate forcing, aerosol optical and microphysical properties and their spatial and temporal distributions, and aerosol interactions with clouds, need to be understood. Such data are also required in conjunction with size-resolved chemical composition in order to evaluate chemical transport models and to distinguish natural and anthropogenic forcing. Other basic parameters needed for modeling the radiative influences of aerosols are surface reflectivity and three-dimensional cloud fields. This large suite of parameters mandates an integrated observing and modeling system of commensurate scope. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept, designed to meet this requirement, is motivated by the need to understand climate system sensitivity to changes in atmospheric constituents, to reduce climate model uncertainties, and to analyze diverse collections of data pertaining to aerosols. This paper highlights several challenges resulting from the complexity of the problem. Approaches for dealing with them are offered in the set of companion papers.

Full access
Phillip B. Chilson, Winifred F. Frick, Jeffrey F. Kelly, Kenneth W. Howard, Ronald P. Larkin, Robert H. Diehl, John K. Westbrook, T. Adam Kelly, and Thomas H. Kunz

Aeroecology is an emerging scientific discipline that integrates atmospheric science, Earth science, geography, ecology, computer science, computational biology, and engineering to further the understanding of biological patterns and processes. The unifying concept underlying this new transdisciplinary field of study is a focus on the planetary boundary layer and lower free atmosphere (i.e., the aerosphere), and the diversity of airborne organisms that inhabit and depend on the aerosphere for their existence. Here, we focus on the role of radars and radar networks in aeroecological studies. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and dual-polarimetric capabilities. These capabilities should be better harnessed to promote both meteorological and aeroecological research and to explore the interface between these two broad disciplines. We strongly encourage close collaboration among meteorologists, radar scientists, biologists, and others toward developing radar products that will contribute to a better understanding of airborne fauna.

Full access
Ralph A. Kahn, John A. Ogren, Thomas P. Ackerman, Jens Bösenberg, Robert J. Charlson, David J. Diner, Brent N. Holben, Robert T. Menzies, Mark A. Miller, and John H. Seinfeld

We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal.

Full access
Soroosh Sorooshian, Amir AghaKouchak, Phillip Arkin, John Eylander, Efi Foufoula-Georgiou, Russell Harmon, Jan M. H. Hendrickx, Bisher Imam, Robert Kuligowski, Brian Skahill, and Gail Skofronick-Jackson

No abstract available.

Full access
Burkely T. Gallo, Christina P. Kalb, John Halley Gotway, Henry H. Fisher, Brett Roberts, Israel L. Jirak, Adam J. Clark, Curtis Alexander, and Tara L. Jensen

Abstract

Evaluation of numerical weather prediction (NWP) is critical for both forecasters and researchers. Through such evaluation, forecasters can understand the strengths and weaknesses of NWP guidance, and researchers can work to improve NWP models. However, evaluating high-resolution convection-allowing models (CAMs) requires unique verification metrics tailored to high-resolution output, particularly when considering extreme events. Metrics used and fields evaluated often differ between verification studies, hindering the effort to broadly compare CAMs. The purpose of this article is to summarize the development and initial testing of a CAM-based scorecard, which is intended for broad use across research and operational communities and is similar to scorecards currently available within the enhanced Model Evaluation Tools package (METplus) for evaluating coarser models. Scorecards visualize many verification metrics and attributes simultaneously, providing a broad overview of model performance. A preliminary CAM scorecard was developed and tested during the 2018 Spring Forecasting Experiment using METplus, focused on metrics and attributes relevant to severe convective forecasting. The scorecard compared attributes specific to convection-allowing scales such as reflectivity and surrogate severe fields, using metrics like the critical success index (CSI) and fractions skill score (FSS). While this preliminary scorecard focuses on attributes relevant to severe convective storms, the scorecard framework allows for the inclusion of further metrics relevant to other applications. Development of a CAM scorecard allows for evidence-based decision-making regarding future operational CAM systems as the National Weather Service transitions to a Unified Forecast system as part of the Next-Generation Global Prediction System initiative.

Free access
Soroosh Sorooshian, Amir AghaKouchak, Phillip Arkin, John Eylander, Efi Foufoula-Georgiou, Russell Harmon, Jan M. H. Hendrickx, Bisher Imam, Robert Kuligowski, Brian Skahill, and Gail Skofronick-Jackson

No abstract available.

Full access
Thorwald H. M. Stein, Robin J. Hogan, Peter A. Clark, Carol E. Halliwell, Kirsty E. Hanley, Humphrey W. Lean, John C. Nicol, and Robert S. Plant

Abstract

A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project is taking a fundamentally new approach to evaluate and improve such models: rather than relying on a limited number of cases, which may not be representative, the authors have gathered a large database of 3D storm structures on 40 convective days using the Chilbolton radar in southern England. They have related these structures to storm life cycles derived by tracking features in the rainfall from the U.K. radar network and compared them statistically to storm structures in the Met Office model, which they ran at horizontal grid length between 1.5 km and 100 m, including simulations with different subgrid mixing length. The authors also evaluated the scale and intensity of convective updrafts using a new radar technique. They find that the horizontal size of simulated convective storms and the updrafts within them is much too large at 1.5-km resolution, such that the convective mass flux of individual updrafts can be too large by an order of magnitude. The scale of precipitation cores and updrafts decreases steadily with decreasing grid lengths, as does the typical storm lifetime. The 200-m grid-length simulation with standard mixing length performs best over all diagnostics, although a greater mixing length improves the representation of deep convective storms.

Full access
Burkely T. Gallo, Christina P. Kalb, John Halley Gotway, Henry H. Fisher, Brett Roberts, Israel L. Jirak, Adam J. Clark, Curtis Alexander, and Tara L. Jensen
Full access