Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Robert L. Creasey x
  • Weather and Forecasting x
  • All content x
Clear All Modify Search
Robert L. Creasey and Russell L. Elsberry

Abstract

A method is developed to calculate the zero-wind center (ZWC) position from a sequence of Yankee High Density Sounding System (HDSS) dropwindsondes deployed during a high-altitude overpass of a tropical cyclone. The approach is similar to the Willoughby and Chelmow technique in that it utilizes the intersections of bearings normal to the wind directions across the center to locate the ZWC position. Average wind directions over 1-km layers are calculated from the accurate global positioning system (GPS) latitude–longitude positions as the HDSS sonde falls from the 60 000-ft flight level of the NASA WB-57 to the ocean surface. An iterative procedure is used to also account for the storm translation, which is necessary to put these high-frequency HDSS observations into a storm-relative coordinate system. The Tropical Cyclone Intensity (TCI-15) mission into Hurricane Joaquin on 4 October 2015 is examined here. The ZWC positions from two center overpasses indicate the vortex tilts from 1- to 10-km elevation and rotates cyclonically with height.

Full access
Eric A. Hendricks, Russell L. Elsberry, Christopher S. Velden, Adam C. Jorgensen, Mary S. Jordan, and Robert L. Creasey

Abstract

The objective in this study is to demonstrate how two unique datasets from the Tropical Cyclone Intensity (TCI-15) field experiment can be used to diagnose the environmental and internal factors contributing to the interruption of the rapid decay of Hurricane Joaquin (2015) and then a subsequent 30-h period of constant intensity. A special CIMSS vertical wind shear (VWS) dataset reprocessed at 15-min intervals provides a more precise documentation of the large (~15 m s−1) VWS throughout most of the rapid decay period, and then the timing of a rapid decrease in VWS to moderate (~8 m s−1) values prior to, and following, the rapid decay period. During this period, the VWS was moderate because Joaquin was between large VWSs to the north and near-zero VWSs to the south, which is considered to be a key factor in how Joaquin was able to be sustained at hurricane intensity even though it was moving poleward over colder water. A unique dataset of High Definition Sounding System (HDSS) dropwindsondes deployed from the NASA WB-57 during the TCI-15 field experiment is utilized to calculate zero-wind centers during Joaquin center overpasses that reveal for the first time the vortex tilt structure through the entire troposphere. The HDSS datasets are also utilized to calculate the inertial stability profiles and the inner-core potential temperature anomalies in the vertical. Deeper lower-tropospheric layers of near-zero vortex tilt are correlated with stronger storm intensities, and upper-tropospheric layers with large vortex tilts due to large VWSs are correlated with weaker storm intensities.

Full access