Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Roy M. Rasmussen x
  • Journal of Atmospheric and Oceanic Technology x
  • All content x
Clear All Modify Search
Roy M. Rasmussen, John Hallett, Rick Purcell, Scott D. Landolt, and Jeff Cole


A new instrument designed to measure precipitation, the “hotplate precipitation gauge,” is described. The instrument consists of a heated thin disk that provides a reliable, low-maintenance method to measure precipitation rate every minute without the use of a wind shield. The disk consists of two heated, thermally isolated identical aluminum plates—one facing upward and the other downward. The two plates are heated independently, and both are maintained at constant temperature above 75°C by electronic circuitry that heats the plates depending on the deviation from the set temperature. Precipitation rate is estimated by calculating the power required to either melt or evaporate snow or to evaporate rain on the upward-facing plate, compensated for wind effects by subtracting out the power on the lower, downward-facing plate. Data from the World Meteorological Organization reference standard for liquid-equivalent snowfall rate measurements, the Double Fence Intercomparison Reference (DFIR) shield system, were used as the truth to develop the hotplate algorithm. The hotplate measures the liquid-equivalent precipitation rate from 0.25 to 35 mm h−1 within the National Weather Service standard for solid precipitation measurement. The hotplate was also shown to measure wind speed during severe icing conditions and during vibration. The high update rate (precipitation rate, wind speed, and temperature every 1 min), make this an ideal gauge for real-time applications, such as aircraft deicing and road weather conditions. It serves as an accumulation gauge by integrating the 1-min rates over time. It can also be used as a rain gauge for rainfall rates up to 35 mm h−1.

Full access
Scott D. Landolt, Roy M. Rasmussen, Alan J. Hills, Warren Underwood, Charles A. Knight, Albert Jachcik, and Andrew Schwartz


The National Center for Atmospheric Research (NCAR) developed an artificial snow-generation system designed to operate in a laboratory cold chamber for testing aircraft anti-icing fluids under controlled conditions. Flakes of ice are produced by shaving an ice cylinder with a rotating carbide bit; the resulting artificial snow is dispersed by turbulent airflows and falls approximately 2.5 m to the bottom of the device. The resulting fine ice shavings mimic snow in size, distribution, fall velocity, density, and liquid water equivalent (LWE) snowfall rate. The LWE snowfall rate can be controlled using either a mass balance or a precipitation gauge, which measures the snowfall accumulation over time, from which the computer derives the LWE rate. LWE snowfall rates are calculated every 6 s, and the rate the ice cylinder is fed into the carbide bit is continually adjusted to ensure that the LWE snowfall rate matches a user-selected value. The system has been used to generate LWE snowfall rates ranging from 0 to 10 mm h−1 at temperatures from −2 to −30°C and densities of approximately 0.1–0.5 g cm−3. Comparisons of the snow-machine fluid tests with the outdoor fluid tests have shown that the snow machine can mimic natural outdoor rates under a broad range of conditions.

Full access