Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Roy M. Rasmussen x
  • Journal of Hydrometeorology x
  • All content x
Clear All Modify Search
Julie M. Thériault, Nicolas R. Leroux, and Roy M. Rasmussen

Abstract

Accurate snowfall measurement is challenging because it depends on the precipitation gauge used, meteorological conditions, and the precipitation microphysics. Upstream of weighing gauges, the flow field is disturbed by the gauge and any shielding used usually creates an updraft, which deflects solid precipitation from falling in the gauge, resulting in significant undercatch. Wind shields are often used with weighing gauges to reduce this updraft, and transfer functions are required to adjust the snowfall measurements to consider gauge undercatch. Using these functions reduces the bias in precipitation measurement but not the root-mean-square error (RMSE). In this study, the accuracy of the Hotplate precipitation gauge was compared to standard unshielded and shielded weighing gauges collected during the WMO Solid Precipitation Intercomparison Experiment program. The analysis performed in this study shows that the Hotplate precipitation gauge bias after wind correction is near zero and similar to wind corrected weighing gauges. The RMSE of the Hotplate precipitation gauge measurements is lower than weighing gauges (with or without an Alter shield) for wind speeds up to 5 m s−1, the wind speed limit at which sufficient data were available. This study shows that the Hotplate precipitation gauge measurement has a low bias and RMSE due to its aerodynamic shape, making its performance mostly independent of the type of solid precipitation.

Open access
Nicolas R. Leroux, Julie M. Thériault, and Roy Rasmussen

Abstract

The collection efficiency of a typical precipitation gauge-shield configuration decreases with increasing wind speed, with a high scatter for a given wind speed. The high scatter in the collection efficiency for a given wind speed arises in part from the variability in the characteristics of falling snow and atmospheric turbulence. This study uses weighing gauge data collected at the Marshall Field Site near Boulder, Colorado, during the WMO Solid Precipitation Intercomparison Experiment (SPICE). Particle diameter and fall speed data from a laser disdrometer were used to show that the scatter in the collection efficiency can be reduced by considering the fall speed of solid precipitation particles. The collection efficiency was divided into two classes depending on the measured mean-event particle fall speed during precipitation events. Slower-falling particles were associated with a lower collection efficiency. A new transfer function (i.e., the relationship between collection efficiency and other meteorological variables, such as wind speed or air temperature) that includes the fall speed of the hydrometeors was developed. The root-mean-square error of the adjusted precipitation with the new transfer function with respect to a weighing gauge placed in a double fence intercomparison reference was lower than using previously developed transfer functions that only consider wind speed and air temperature. This shows that the measured fall speed of solid precipitation with a laser disdrometer accounts for a large amount of the observed scatter in weighing gauge collection efficiency.

Open access
Matteo Colli, Luca G. Lanza, Roy Rasmussen, and Julie M. Thériault

Abstract

The use of windshields to reduce the impact of wind on snow measurements is common. This paper investigates the catching performance of shielded and unshielded gauges using numerical simulations. In Part II, the role of the windshield and gauge aerodynamics, as well as the varying flow field due to the turbulence generated by the shield–gauge configuration, in reducing the catch efficiency is investigated. This builds on the computational fluid dynamics results obtained in Part I, where the airflow patterns in the proximity of an unshielded and single Alter shielded Geonor T-200B gauge are obtained using both time-independent [Reynolds-averaged Navier–Stokes (RANS)] and time-dependent [large-eddy simulation (LES)] approaches. A Lagrangian trajectory model is used to track different types of snowflakes (wet and dry snow) and to assess the variation of the resulting gauge catching performance with the wind speed. The collection efficiency obtained with the LES approach is generally lower than the one obtained with the RANS approach. This is because of the impact of the LES-resolved turbulence above the gauge orifice rim. The comparison between the collection efficiency values obtained in case of shielded and unshielded gauge validates the choice of installing a single Alter shield in a windy environment. However, time-dependent simulations show that the propagating turbulent structures produced by the aerodynamic response of the upwind single Alter blades have an impact on the collection efficiency. Comparison with field observations provides the validation background for the model results.

Full access
Matteo Colli, Luca G. Lanza, Roy Rasmussen, and Julie M. Thériault

Abstract

The aerodynamic response of snow gauges when exposed to the wind is responsible for a significant reduction of their collection performance. The modifications induced by the gauge and the windshield onto the space–time patterns of the undisturbed airflow deviate the snowflake trajectories. In Part I, the disturbed air velocity field in the vicinity of shielded and unshielded gauge configurations is investigated. In Part II, the airflow is the basis for a particle tracking model of snowflake trajectories to estimate the collection efficiency. A Geonor T-200B gauge inside a single Alter shield is simulated for wind speeds varying from 1 to 8 m s−1. Both time-averaged and time-dependent computational fluid dynamics simulations are performed, based on Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) models, respectively. A shear stress tensor k–Ω model (where k is the turbulent kinetic energy and Ω is the turbulent specific dissipation rate) is used for the RANS formulation and solved within a finite-volume method. The LES is implemented with a Smagorinsky subgrid-scale method that models the subgrid stresses as a gradient-diffusion process. The RANS simulations confirm the attenuation of the airflow velocity above the gauge when using a single Alter shield, but the generated turbulence above the orifice rim is underestimated. The intensity and spatial extension of the LES-resolved turbulent region show a dependency on the wind speed that was not detected by the RANS. The time-dependent analysis showed the propagation of turbulent structures and the impact on the turbulent kinetic energy above the gauge collecting section.

Full access
Matteo Colli, Mattia Stagnaro, Luca G. Lanza, Roy Rasmussen, and Julie M. Thériault

Abstract

Adjustments for the wind-induced undercatch of snowfall measurements use transfer functions to account for the expected reduction of the collection efficiency with increasing the wind speed for a particular catching-type gauge. Based on field experiments or numerical simulation, collection efficiency curves as a function of wind speed also involve further explanatory variables such as surface air temperature and/or precipitation type. However, while the wind speed or wind speed and temperature approach is generally effective at reducing the measurement bias, it does not significantly reduce the root-mean-square error (RMSE) of the residuals, implying that part of the variance is still unexplained. In this study, we show that using precipitation intensity as the explanatory variable significantly reduces the scatter of the residuals. This is achieved by optimized curve fitting of field measurements from the Marshall Field Site (Colorado, United States), using a nongradient optimization algorithm to ensure optimal binning of experimental data. The analysis of a recent quality-controlled dataset from the Solid Precipitation Intercomparison Experiment (SPICE) campaign of the World Meteorological Organization confirms the scatter reduction, showing that this approach is suitable to a variety of locations and catching-type gauges. Using computational fluid dynamics simulations, we demonstrate that the physical basis of the reduction in RMSE is the correlation of precipitation intensity with the particle size distribution. Overall, these findings could be relevant in operational conditions since the proposed adjustment of precipitation measurements only requires wind sensor and precipitation gauge data.

Free access
Pablo A. Mendoza, Martyn P. Clark, Naoki Mizukami, Andrew J. Newman, Michael Barlage, Ethan D. Gutmann, Roy M. Rasmussen, Balaji Rajagopalan, Levi D. Brekke, and Jeffrey R. Arnold

Abstract

The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.

Full access